Реакция получения полиэтилена – Реакция получения полиэтилена ПНД и ПВД, тип, формула

Содержание

Реакция получения полиэтилена ПНД и ПВД, тип, формула

Реакция получения полиэтилена – это процесс, в котором происходит расщепление π-связи алкенов и образование линейной макромолекулы. Разрыв двойной связи олефинов обусловлен жестким влиянием среды, которое выражается в увеличении значений давления и температуры по сравнению с величинами, характерными для нормальных условий.

Тип реакции получения полиэтилена из этилена – классическая полимеризация непредельных углеводородов, свойственная всем алкенам.

Разновидности синтеза

Существует два основных варианта проведения реакции синтеза полиэтилена. Они отличаются условиями и аппаратным исполнением. В обеих ситуациях процесс проходит при повышенном давлении, температуре, в присутствии катализаторов.

Получение ПЭВД

Полиэтилен получают из этилена в результате реакции, при которой мономер переходит в активное состояние.

При воздействии температуры, значения которой достигают 320 °С, давления, повышенного до 320 мПа, инициирование вызывают образующиеся из пероксидных соединений радикалы. Полиэтилен, реакция полимеризации которого идет по радикальному механизму, имеет низкую плотность, называется продуктом высокого давления, обозначается в международном сообществе аббревиатурой LDPE.

Маленькая плотность упаковки макромолекул обусловлена присутствием разветвлений, как это отображено в уравнении реакции получения полиэтилена.

Процесс проводят в автоклавах при идеальном перемешивании или трубчатых реакторах при идеальном вытеснении продуктов.

Получение ПЭНД

При увеличении давления до 5 мПа образование полиэтилена из этилена — результат реакции без участия радикалов. Активацию мономеров обеспечивают комплексные катализаторы.

Температура до 95 °С позволяет проводить процесс в суспензии, каталитическое действие выполняют сложные неорганические соединения титана.

Реакция полимеризации полиэтилена при температуре до 120 °С проходит с участием оксидов хрома, нанесенных на силикагель.

Комплексные соединения хрома, зафиксированные на силикагеле, позволяют проводить процесс в газовой фазе при температуре, не достигающей 100 °С.

Если полиэтилен получают, используя реакцию с катализаторами, продукт представляет собой линейную макромолекулу без разветвлений, имеет большую плотность, в международной литературе обозначается аббревиатурой HDPE.

Реакция синтеза полиэтилена с комплексными катализаторами приводит к получению продукта, который можно перерабатывать из б/у состояния.

Полимер из вторичного сырья

Полиэтиленовые отходы утилизируют по технологии, включающей очистку вторичного сырья, измельчение, образование агломератов, гранул, последующую экструзию. Графическое уравнение реакции полиэтилена б/у идентично схеме получения ПЭНД потому, что повторная полимеризация не осуществляется.

Реакция получения полиэтилена б/у, по существу, является физическим процессом, при котором происходит изменения агрегатного состояния.

oplenke.ru

Получение полиэтилена

08.05.11 11:52

Для полиэтилена сырьем является газ этилен. Путем полимеризации этилена при низких и высоких давлениях, получается полиэтилен. Зачастую полиэтилен производится в виде гранул (ø 2-5 мм.), реже - в виде порошка. Полиэтилен причисляют к классу полиолефинов. Основные два  вида полиэтиленов: Полиэтилен Высокой Плотности (то же, что и Низкого Давления) HDPE; Полиэтилен Низкой Плотности (то же, что и Высокого Давления) LDPE. Есть еще несколько подклассов полиэтилена.

Полиэтилен  высокого давления (ПЭВД, ПВД) или полиэтилен низкой плотности (ПЭНП, LDPE) – получают при высоких давлениях. В промышленности процесс полимеризации этилена происходит в автоклавном или трубчатом реакторах. Например, в трубчатом реакторе реакция проходит по радикальному механизму. При воздействии с кислородом или пероксидами (бензоила, лаурила), используемых в качестве инициатора. Этилен в смеси с инициатором, нагретый до 700˚С и сжатый до 25 МПа, поступает в первый отсек реактора, где поддается нагреву до 1800˚С, постепенно перемещается во вторую зону, где, при давлении 150-300 МПа и температуре 190˚С-300˚С, полимеризуется. Время пребывания этилена в реакторе в среднем колеблется от 70 до 100 секунд. В зависимости от типа инициатора и его количества, средняя степень превращения 18-20%. На следующем этапе удаляется из полиэтилена, этилен, который не прореагировал. Расплав гранулируют, охладив до 180˚С-190˚С. На следующем этапе, гранулы охлаждают водой до 60˚С-70˚С,  упаковывают в мешки, предварительно просушив их теплым воздухом. Гранулы товарного полиэтилена  высокого давления могут быть окрашенными и неокрашенными.

 

Полиэтилен низкого давления (ПЭНД, ПНД) или полиэтилен высокой плотности (ПЭВП, HDPE) – получают при низких давлениях. Для получения данного вида полиэтилена существуют 3 основные технологии: осуществляется газофазная полимеризация;  реакция происходит в растворе; реакция происходит в суспензии.

Процесс получения  ПНД в растворе. Данный процесс происходит при температуре 160˚С-250˚С, при воздействии давления 3-5 МПа, чаще всего в растворе гексана и в присутствии катализатора (катализаторы, например, смесь TiCl4 и AlR3), время воздействия с которым колеблется от 10 до 15 минут. От  раствора полиэтилен отделяют сначала в испарителе, потом в сепараторе, после – в вакуумной камере гранулятора. На следующем этапе, гранулы полиэтилена пропариваются водяным паром, температура которого превышает температуру плавления полиэтилена, для того, чтобы его низкомолекулярные фракции  перешли в воду, а остатки катализатора были нейтрализованы. Товарный полиэтилен низкого давления выпускается в гранулах, реже в порошках.  Бывает окрашенным и неокрашенным.

Статьи по теме:

Свойства полиэтилена< Предыдущая   Следующая >Переработка и использование поликарбоната

www.koros-plast.ru

Полиэтилен, виды, характеристики, свойства и получение

Полиэтилен, виды, характеристики, свойства и получение.

 

 

Полиэтилен – термопластичный полимер этилена. Является органическим соединением и имеет длинные молекулы.

 

Описание и характеристики полиэтилена

Физические, химические и иные свойства полиэтилена

Физические свойства полиэтилена (таблица)

Виды полиэтилена

Получение полиэтилена

 

Описание и характеристики полиэтилена:

Полиэтилен – термопластичный полимер этилена, относится к классу полиолефинов. Также называется политеном.

Полиэтилен  является органическим соединением и имеет длинные молекулы …—CH2—CH2—CH2—CH2—…, где «—» обозначает ковалентные связи между атомами углерода. Таким образом, молекула полиэтилена имеют простую химическую структуру и представляет собою цепочку атомов углерода, к каждому из которых присоединены две молекулы водорода.

Химическая формула полиэтилена2H4)n. Молекулярный вес – до 500 000 г/моль.

Химическая формула этилена, из которого производится полиэтилен, C2H4. Рациональная формула этилена CH2=CH2.

В свою очередь полиолефины представляют собой класс высокомолекулярных соединений (полимеров), получаемых из низкомолекулярных веществ – олефинов (мономеров) – непредельных углеводородов (этилена, пропилена, бутилена и других альфа-олефинов). Они вырабатываются из нефти или природного газа путём полимеризации одинаковых (гомополимеризации) или разных (сополимеризации) мономеров в присутствии катализатора.

Полиэтилен внешне представляет собой твердую массу белого цвета (тонкие листы прозрачны и бесцветны).

Существует две модификации полиэтилена: линейный и нелинейные полиэтилен. Они отличаются друг от друга по структуре и соответственно по свойствам. В первой –линейной форме мономеры связаны в линейные цепи со степенью полимеризации обычно 5000 и более. Они не имеют боковых ответвлений от основной цепи. В другой – нелинейной форме имеются многочисленные боковые ответвления мономеров, которые присоединены к основной цепи случайным способом.

Полиэтилен проявляет различные свойства. Разнообразие свойств полиэтилена можно объяснить его молекулярной структурой, молекулярной массой и степенью кристалличности, которая, в свою очередь, зависит от молекулярной массы и степени ветвления мономеров. Чем меньше разветвлены полимерные цепи и чем меньше молекулярная масса, тем выше кристалличность полиэтилена и тем более он плотный. Таким образом, существует линейная зависимость между плотностью и степенью кристалличности.

Полиэтилен самый распространенный из полимеров. Каждый год его производится более 100 миллионов тонн, что составляет 34 % от общего объема производства всех пластмасс.

 

Физические, химические и иные свойства полиэтилена:

– чистый полиэтилен имеет белый цвет, непрозрачен в толстом слое, тонкие листы прозрачны и бесцветны,

– кристаллизуется в диапазоне температур от -60 °С до минус 369 °С,

– не имеет запаха,

– имеет небольшой вес и различную плотность, которая зависит от разновидности и способа получения определенного вида полиэтилена,

– не чувствителен к удару, является амортизатором,

– имеет чрезвычайно низкую адгезию,

– обладает низким коэффициентом трения,

– характеризуется абсолютной водонепроницаемостью. Он не смачивается водой и не впитывает ее. Однако кратковременная обработка полиэтилена кислотой или окислителями приводит к окислению поверхности и смачиванию ее водой, полярными жидкостями и клеями. В этом случае изделия из полиэтилена можно склеивать,

– при нагревании до 80-120°С размягчается. Полиэтилен не способен противостоять высоким температурам, что не дает возможность использовать его в экстремальных условиях,

– характеризуется морозостойкостью. Полиэтилен может эксплуатироваться при температурах от -70°С до 100 °С. Некоторые виды полиэтилена сохраняют свои полезные свойства при температурах ниже -120°С. Морозостойкость полиэтилена зависит от разновидности и способа получения определенного вида полиэтилена,

– полиэтилен в виде тонких пленок обладает высокой гибкостью и прозрачностью, а в виде листов становится жестким и непрозрачным,

– является диэлектриком,

– устойчив к действию воды,

– обладает отличной пароизоляцией и гидроизоляцией. Но проницаем для кислорода и углекислого газа,

– под действием солнечного света становится хрупким. В качестве добавки-стабилизатора от воздействия ультрафиолетового излучения используют углеродную сажу,

– является химически стойким веществом,

– не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой. Но разрушается при действии 50%-й азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. При температурах выше 60 °С серная и азотная кислоты также быстро его разрушают.

– при комнатной температуре не растворяется в органических растворителях. При температуре выше 80 °С сначала набухает, а затем растворяется в ароматических углеводородах и их галогенопроизводных,

– горит голубоватым пламенем, со слабым светом и желтым кончиком, при этом издаёт запах парафина, то есть такой же, какой исходит от горящей свечи. Материал продолжает гореть на удалении источника пламени и производит потеки,

– из-за своей химической стойкости в естественной среде разлагается в течение порядка 500 лет, что существенно ухудшает экологическую обстановку. Поэтому для борьбы с загрязнением окружающей среды полиэтиленовыми пакетами около 40 стран ввели запрет или ограничение на продажу и (или) производство пластиковых пакетов. Однако если в состав полиэтилена ввести специальные добавки-деграданты время разложения в естественной среде составляет до 1,5-3 лет. Благодаря добавкам-биодеградантам он разлагается на элементарные составляющие: воду, углекислый газ и биомассу,

– биологически инертен.

 

Физические свойства полиэтилена (таблица):

Наименование показателя:
Значение:
Молекулярная масса, г/мольдо 500 000*
Плотность, г/см3от 0,88 до 0,96*
Температура плавления, оСот 115 до 180*

* зависит от вида полиэтилена.

 

Виды полиэтилена:

В основе классификации полиэтилена положена его плотность. Полиэтилен классифицируется на следующие виды:

полиэтилен низкой плотности (высокого давления). Обозначается ПЭНП, ПЭВД, ПВД, LDPE (Low Density Polyethylene).

полиэтилен высокой плотности (низкого давления), ПЭВП, ПЭНД, ПНД, HDPE (High Density Polyethylene),

полиэтилен среднего давления (высокой плотности), ПЭСД,

линейный полиэтилен средней плотности, ПЭСП, MDPE или PEMD,

линейный полиэтилен низкой плотности, ЛПЭНП, LLDPE или PELLD,

полиэтилен очень низкой плотности, VLDPE,

полиэтилен сверхнизкой плотности, ULDPE,

металлоценовый линейный полиэтилен низкой плотности, MPE,

сшитый полиэтилен, PEX или XLPE, XPE,

высокомолекулярный полиэтилен, ВМПЭ, HMWPE или PEHMW или VHMWPE,

сверхвысокомолекулярный полиэтилен, СВМПЭ, UHMWPE.

 

Получение полиэтилена:

Полиэтилен получают путем полимеризации этилена. Первоначально полиэтилен производится в гранулах от 2 до 5 мм, окончательную форму он приобретает в процессе термической обработки на специальном оборудовании.

Каждый вид полиэтилена получают различными способами. Рассмотрим на примере полиэтилена низкой плотности (высокого давления), полиэтилена среднего давления и полиэтилена высокой плотности (низкого давления). 

Полиэтилен низкой плотности (высокого давления, ПЭНП, ПЭВД, ПВД, LDPE) образуется в автоклавном или трубчатом реакторах при:

– температуре 200-260 °C,

– давлении 150-300 МПа,

– в присутствии инициатора (кислород или органический пероксид).

Реакция происходит по радикальному механизму в расплаве. Жидкий продукт впоследствии гранулируют. Получаемый по этому методу полиэтилен имеет молекулярную массу 80 000 – 500 000 г/моль и степень кристалличности 50-60 %.

Полиэтилен среднего давления (высокой плотности, ПЭСД) образуется при:

– температуре 100-120 °C,

– давлении 3-4 МПа,

– в присутствии катализатора (например, катализаторов Циглера-Натта).

В результате реакции продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет молекулярную массу 300 000 – 400 000 г/моль и степень кристалличности 80-90 %.

Полиэтилен высокой плотности (низкого давления, ПЭНД, ПЭВП, ПНД, HDPE) образуется при:

– температуре 120-150 °C,

– давлении ниже 0,1-2 МПа,

– в присутствии катализатора (например, катализаторов Циглера-Натта).

Полимеризация происходит в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет молекулярную массу 80 000 – 300 000 г/моль и степень кристалличности 75-85 %.

В процессе полимеризации полиэтилена последний может быть химически модифицирован. Благодаря чему получаются новые виды. Например, металлоценовый линейный полиэтилен низкой плотности, биоразлагаемый полиэтилен, квантовый полиэтилен.

 

© Фото https://www.pexels.com, https://pixabay.com,

 

карта сайта

полиэтилен описание материала
кабель сшитый вспененный полиэтилен низкого высокого давления химические физические свойства описание трубы технические характеристики материала
уравнение реакция получения полиэтилена из этилена высокого низкого давления

 

Коэффициент востребованности 724

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Физические и химические свойства полиэтилена

Впервые полиэтилен был случайно получен одним из немецких инженеров в 1899 году. После, более тридцати лет этому веществу не уделяли должного внимания, но уже в начале 30-х годов из полимера стали производить телефонные кабели. Как сырьё для получения тары, полиэтилен начал использоваться только в начале 50-х годов XIX века.

Физические свойства полиэтилена

Полимеризованный этилен обладает большой термопластичностью. Тонкие пласты полимера целиком прозрачны, а при обыкновенных условиях – это белая масса, стойкая как к химическим воздействиям, так и к пониженным температурам. Полиэтилен не проводит электрический ток, амортизирует удары и при нагревании до восьмидесяти градусов Цельсия становится мягким, пластичным.

Получают главным образом два типа полиэтилена: высокого давления (имеет низкую плотность, примерно 900-930 кг/м ) – ПЭВД – изготавливается при высоком давлении; низкого давления – ПЭНД – соответственно производится при низком давлении (ρ от 940 до 960 кг/м ).

Разница в физических свойствах этих двух модификаций существенна: предел текучести у ПЭНД в два раза выше, чем у ПЭВД, как, собственно, теплопроводность и температура плавления.

Строение макромолекул полимера

Полимерные цепи полиэтилена ВД состоят примерно из 1000 звеньев мономеров и включают в себя боковые ответвления цепей С1 – С4. Полиэтилен НД содержит цепи, практически не включающие разветвлений, имеет кристаллическую структуру. Именно поэтому данная модификация полиэтилена имеет большую плотность, по сравнению с ПЭВД, который почти не содержит кристаллической сетки. Все свойства продукта из полимеризованного этилена будут напрямую зависеть от условий его изготовления и эксплуатации.

Химия полиэтилена

Его химические свойства зависят от модификации, плотности образца и его молекулярного веса. Полиэтилен горит светло-голубым пламенем, издавая запах горящей парафиновой свечи. Он не взаимодействует с основаниями, с ионными электролитами, а также с концентрированными растворами хлороводородной кислоты и HF. Полимер деструктурируется под действием газообразных Cl2 и F2 и их жидких аналогов, то же происходит при взаимодействии с концентрированной азотной кислотой (w>50%).

Полиэтилен не нейтрализует растворы марганцовки и Br2 x h30, устойчив к влиянию любых растворителей. Однако, уже при восьмидесяти градусах Цельсия разлагается под действием циклического гексана и CCl4. При подведении давления в несколько атмосфер, полимер растворяется в воде с t h3O = 180°C.

По истечении некоторого времени, полимер разрушается, образовывая перпендикулярные межцепные связи, становится хрупким и на доли процента увеличивается его прочность. Дестабилизированный полимер на открытом воздухе подвергается термостарению – процессу термоокисления и последующей деструкции. Процесс проходит по R-механизму с отщеплением R-CHO, R-CO-R, HOOH и других продуктов.

Полиэтилен не выделяет в окружающую среду никаких опасных веществ и поэтому безвреден для человеческого организма. Под действием солнечного света образец полимера подвергается фотостарению. Эффективной защитой полиэтилена от УФ воздействия послужат ароматические амины, фенолы и даже сажа.

Для улучшения эксплуатационных свойств полиэтилен можно подвергать модифицированию: хлорировать, фторировать, улучшать химическую стойкость и теплостойкость, уменьшить склонность к растрескиванию, проводить сополимеризацию для улучшения ударной вязкости.

Получение промышленными методами

Данный полимер в промышленности получают главным образом каталитической полимеризацией С2Н4:

  • полиэтилен ВД получают нагреванием этилена до значения в 473-523 К. Давление процесса доводят до 1,5-3 х 10 Па, проводя его под действием О2 или ROOH преимущественно в массообменных резервуарах. Механизм процесса является радикальным. Средняя молекулярная масса продукта достигает 500 тысяч с кристаллизацией в 60%. Чистое вещество – жидкость, которая в дальнейшем гранулируется;
  • полиэтилен СД выделяется в хлопьеподобный осадок при нагреве до 373 К и давлении 0.035 х 10 Па. В качестве катализатора в данном процессе используют смесь TiCl4 и AlR3. Кристалличность осадка достигает 90%, средняя молекулярная масса 400 тысяч единиц;
  • полиэтилен НД получают по специализированному механизму. Молярная масса обычно имеет значение от восьмидесяти до трёхсот тысяч единиц. Полиэтилен данного типа выделяют при t = 393-423 К, пониженном давлении в присутствии смеси хлорида титана и алкил-алюминатов.

Получить полимер в промышленности можно и иначе, например, действуя на этилен α- или β-излучением, но данный способ весьма редко используется при получении полиэтилена.

polimerinfo.com

Из чего делают полиэтилен? Производство полиэтилена

История знает множество случаев, когда востребованные в той или иной отрасли материалы были получены в качестве побочного продукта при проведении научных опытов.

Ярким тому примером могут послужить анилиновые красители, которые совершили настоящий переворот  в легкой промышленности. Аналогичная история случилась и с полиэтиленом.

История открытия

Впервые материал был случайно получен в 1899 году химиком Гансом фон Пехманном вследствие разогрева диамезотана. Химик обратил внимание на плотный и напоминающий воск материал, осевший на дно пробирки, однако эта случайность оказалось позабытой, и лишь через три десятилетия побочный продукт был вновь получен М. Перрином и Дж. Паттоном. В 1936 году был получен патент на низкоплотный полиэтилен, а уже через пару лет стартовало массовое производство. 

Особенности

Полученный материал представляет собой белоцветный и твердый полимер, относящийся к органическим соединениям. Ключевым сырьем для получения полиэтилена служит этилен, от которого и пошло название. Данный газ полимеризуется при низком и высоком давлении, в результате чего получаются сырьевые гранулы для дальнейшей эксплуатации. В некоторых случаях материал производится в порошковом виде.

Существует множество разновидностей данного материала, каждая из которых обладает своими особенностями и сферой применения. Полиэтилен может отличаться по степени давления в процессе производства, плотности и многим другим аспектам. В гранулированные вариации в процессе производства могут добавляться разнообразные красители, позволяющие получить тот или иной цвет.

Свойства

Материал устойчив к влаге, к множеству растворителей, органическим и неорганическим кислотам, а также не реагирует на соль. В процессе горения выделяется парафиновый запах, присутствует голубоватое свечение и слабый огонь. Материал разлагается при контакте с азотной кислотой, фтором и хлором. В процессе старения полиэтилена происходит образование поперечных связей между молекулярными цепями, из-за чего он становится хрупким.

Производство линейного полиэтилена

Метод производства варьируется в зависимости от типа материала. В случае линейной вариации полиэтилена температура нагрева должна достигать отметки  120 °С, давление в пределах 4 Мпа, а катализатором выступает смесь металлоорганического соединения с хлоридом титана. Процесс производства включает в себя выпадение материала в виде хлопьев, которые затем отделяют от раствора с дальнейшим процессом грануляции.

Производство полиэтилена низкого давления

ПНП может производиться тремя способа. В основном применяется суспензионная полимеризация, требующая постоянного перемешивания сырья и катализатора для запуска процесса. Второй способ - это полимеризация в растворе с определенной температурой и катализатором, которому свойственно вступать в реакцию, а потому метод не слишком эффективен. Последний из способов представляет собой газофазную полимеризацию, которая представляет собой процесс смешивания сырьевых газовых фаз под воздействием диффузии.

Производство полиэтилена высокого давления

Такая разновидность может быть получена при температурном режиме в диапазоне  от 200 до 250°С. В качестве катализатора может применяться органический пероксид. Давление должно быть в диапазоне 150-300 МПа. В первой фазе масса находится в жидком состоянии, после чего отправляется к сепаратору, а затем к гранулятору.

www.simplexnn.ru

Полиэтилен реакции - Справочник химика 21

    Полиэтилен. Реакция полимеризации этилена открыта в 1933 г. [c.324]

    При хлорировании насыщенных полимеров, таких, как полиэтилен, реакция замещения протекает по радикальному механизму  [c.236]

    Согласно этой теории ббльшая часть разветвлений в полиэтилене происходит вследствие реакций внутримолекулярного переноса цепей  [c.173]

    Полиэтилен (—СНг—СНг—СНг—СНг—)п не имеет в своем составе циклических групп. При коксовании его в автоклаве кокс не был получен. Дистиллят коксования состоял из смеси кристаллического парафина (см, фото 21) с температурой плавления 57 °С и масляной беспарафиновой части с высоким йодным числом. Коксование высокополимерного углеводорода алифатического строения проходило по схеме параллельных реакций с образованием молекул предельных и непредельных углеводородов. [c.47]


    Полиэтилен высокого давления (ВД) получается полимеризацией этилена в присутствии кислорода или перекисных инициаторов. Процесс протекает по цепному радикальному механизму. С повышением давления и температуры скорость реакции увеличивается. [c.5]

    Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий. [c.7]

    Полиэтилен, полученный последними двумя способами (полиэтилен низкого давления), имеет строго линейное строение, более высокую молекулярную массу до 70 000 и температуру плавления на 20° выше, чем полиэтилен высокого давления с разветвленной структурой. Зависимость основных механических свойств полиэтилена от молекулярной массы представлена на рис. 94. Полимеризация этилена при высоком давлении представляет собой цепную реакцию, протекающую по свободно-радикальному механизму с выделением большого количества теплоты  [c.216]

    Свежий этилен из хранилища 1 и возвратный этилен из отделителя низкого давления 9 подаются в смеситель 2, куда поступает кислород. Газовая смесь сжимается в компрессоре первого каскада 3, смешивается в смесителе 4 с возвратным этиленом из отделителя высокого давления 8 и сжимается в компрессоре второго каскада 5 до давления 150—300 МПа. Пройдя маслоотделитель 6, газ подается в трубчатый реактор полимеризации 7. Из него продукты реакции поступают в отделитель высокого давления 8, где из них выделяется часть не вступившего в реакцию этилена. Он охлаждается в холодильнике 12 и направляется в смеситель 4. Полиэтилен в виде расплава из отделителя 8 подается в отделитель низкого давления 9, где от него при давлении 1,5-10 Па отделяется остаток этилена, который после охлаждения в холодильнике 11 поступает на смешение со свежим этиленом. Расплавленный ПЭ поступает на грануляцию в гранулятор 10, в котором продавливается через [c.390]

    Технология производства многих важных для народного хозяйства продуктов требует, чтобы газ, участвующий в процессах, подавался под высоким давлением. Например, при производстве некоторых видов полиэтиленов необходимо сжатие газов до 250 МПа, а при производстве азотных удобрений реакции проводят при давлении 25—32 МПа. Добыча нефти со дна морей, закачка газов в пласт для увеличения выхода нефти требует газов, сжатых до 70 МПа. Транспортировка природных газов производится при давлении газа до 10 МПа. Даже для привода пневматических машин и инструментов, используемых для механизации работ, воздух сжимается до 0,9—1,5 МПа. [c.76]

    А для того чтобы получить полиэтилен по рецепту Циглера, сырье приходится сначала растворить в бензине—иначе реакция попросту не пойдет. Затем полученный полиэтилен нужно отделить от растворителя и катализатора, многократно промыть (сначала водой, а потом спиртом) и высушить. В итоге полиэтилен низкого давления несколько дороже. [c.127]

    Далее было показано, что аналогичным путем можно получать из этилена низкомолекулярные полимеры, содержащие звенья другой химической природы. Типичным примером является выше описанная реакция К. Циглера (стр. 595) по получению полиэтиленов при взаимодействии триэтилалюминия с этиленом. По реакции [c.644]

    Из диазометана под действием соединений бора получаются строго линейные полиметилены, близкие по свойствам к полиэтилену низкого давления для этой реакции принят катионный механизм  [c.937]

    Полиэтилен, полученный при высоком давлении, имеет наименее регулярное строение. В условиях высокой температуры, при которой осуществляется этот процесс, значительную роль играют реакции передачи цепи, связанные с отрывом атомов водорода, приводящие к образованию многочисленных ответвлений в макромолекулах. [c.205]

    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Трудно определить заранее, какие реакции более характерны для поливинилхлорида по сравнению с хлорированным полиэтиленом — реакции замещения (ввиду наличия активных атомов хлора в аллильных группах) или реакции дегидрогалогенирования. Следует отметить, что на основе поливинилхлорида получены слабоосновные анионитные мембраны (табл. 1П-10) [93]. Скорость реакции повышается при использова- [c.240]

    Полиэтилен и полинронилен низкого давления (н. д.) получают в реакторах с перемешиванием без внешнего теплоотвода. Тепло реакции отводится путем ыспарепия части растворителя или исходного сырья, последующей его конденсации и возврата в реактор. [c.280]

chem21.info

6.Свойства полиэтилена и способы его получения.

ПЭ – термопластичный, насыщенный, полимерный УВ, молекулы которого состоят из звеньев (-СН2-СН2-). В зависимости от метода получения свойства ПЭ заметно изменяются, особенно , твердость, жесткость и прочность. ПЭ – непрозрачный полимер без запаха и вкуса. В ПЭ одновременно с кристаллизованной фазой всегда присутствует фаза аморфная. Соотношение их зависит от способа получения ПЭ и условий его кристаллизации. Соотношение этих фаз определяет и многие свойства полимера. Ассортимент ПЭ очень широки в зависимости от требований. В последнее время очень часто стали использовать линейный ПЭ низкой плотности. Его получают полимеризацией этилена в газовой фазе в присутствии сомономеров (гексен, октен). Его получают в виде порошка при низком давлении суспензионным способом. Эта марка ПЭ отличается от обычных марок ПЭ более высокими прочностными характеристиками, более высокой износостойкостью, большой стойкостью к ударным нагрузкам, к различным агрессивным средам. Он способен сохранять свойства в широком интервале t. ПЭ не смачивается водой и др. полимерными жидкостями. При комнатной t он не растворяется в органических растворителях и только при повышении t он сначала набухает, а потом растворяется в ароматических и хлорированных УВ. лучшими растворителями являются ксилол, декалин, тетралин. При охлаждении растворов ПЭ выпадает в виде порошка. Масла, жиры, керосин и др. нефтяные УВ практически не действуют на ПЭ. ПЭ устойчив к действию водных растворов кислот, щелочей, солей, но при t выше 60, серная и азотная кислота его разрушают. ПЭ обладает низкой теплопроводностью и большим коэффициентом термического расширения. По электрическим свойствам ПЭ неполярный полимер и поэтому он высококачественный диэлектрик.

Кроме положительных свойств ПЭ имеет недостатки: старение под действием солнечного света, длительных нагрузок, даже при невысоких t. У него недостаточная механическая прочность, горючесть низкая – это непрозрачный полимер. Полиолефины – самый распространенный тип полимера, получаемый реакцией полимеризации или сополимеризации этилена и др. олефинов.

По традиционной классификации в зависимости от способа получения бывают ПЭ высокого давления (ПЭВД) – высокомолекулярный продукт, который получается полимеризацией этилена, при высокой t до 300 и высоким Р до 250МПа в присутствии инициаторов радикального типа. ПЭНД получают при давлении до 6МПа в присутствии комплексных металлоорганических катализаторов.

7.Процесс получения полиэтилена. Характеристика основного оборудования.

ПЭ – термопластичный, насыщенный, полимерный УВ, молекулы которого состоят из звеньев (-СН2-СН2-). В зависимости от метода получения свойства ПЭ заметно изменяются, особенно , твердость, жесткость и прочность. ПЭ – непрозрачный полимер без запаха и вкуса. В ПЭ одновременно с кристаллизованной фазой всегда присутствует фаза аморфная. Соотношение их зависит от способа получения ПЭ и условий его кристаллизации. Соотношение этих фаз определяет и многие свойства полимера. В последнее время очень часто стали использовать линейный ПЭ низкой плотности. Его получают полимеризацией этилена в газовой фазе в присутствии сомономеров (гексен, октен). Его получают в виде порошка при низком давлении суспензионным способом. Эта марка ПЭ отличается от обычных марок ПЭ более высокими прочностными характеристиками, более высокой износостойкостью, большой стойкостью к ударным нагрузкам, к различным агрессивным средам. Он способен сохранять свойства в широком интервале t. ПЭ не смачивается водой и др. полимерными жидкостями. При комнатной t он не растворяется в органических растворителях и только при повышении t он сначала набухает, а потом растворяется в ароматических и хлорированных УВ. лучшими растворителями являются ксилол, декалин, тетралин. При охлаждении растворов ПЭ выпадает в виде порошка. Масла, жиры, керосин и др. нефтяные УВ практически не действуют на ПЭ. ПЭ устойчив к действию водных растворов кислот, щелочей, солей, но при t выше 60, серная и азотная кислота его разрушают. ПЭ обладает низкой теплопроводностью и большим коэффициентом термического расширения. По электрическим свойствам ПЭ неполярный полимер и поэтому он высококачественный диэлектрик.

Кроме положительных свойств ПЭ имеет недостатки: старение под действием солнечного света, длительных нагрузок, даже при невысоких t. У него недостаточная механическая прочность, горючесть низкая – это непрозрачный полимер. Полиолефины – самый распространенный тип полимера, получаемый реакцией полимеризации или сополимеризации этилена и др. олефинов.

По традиционной классификации в зависимости от способа получения бывают ПЭ высокого давления (ПЭВД) – высокомолекулярный продукт, который получается полимеризацией этилена, при высокой t до 300 и высоким Р до 250МПа в присутствии инициаторов радикального типа. ПЭНД получают при давлении до 6МПа в присутствии комплексных металлоорганических катализаторов.

Оборудование: Трубчатый реактор состоит из прямых отрезков труб, которые соединены изогнутыми трубами – колачи. Они последовательно соединены друг с другом и снабжаются рубашками. Реактор подогревается перегретой водой с t=190-200. В 1-ой части реактора происходит подогрев этилена до 180-200, во 2-ой – полимеризация этилена при t=180-190. Если реатор трехзонный, то инверсия 20-30%. Реактор – автоклав смешалкой. В автоклаве более равномерный тепловой режим, металлоемкость схемы ниже. В трубчатом реакторе лучше получают ПЭ, который используется для получения пленочных мат-в, в автоклаве – применяестя для изготовления покрытий для изоляции.

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о