Из чего проволоку делают: Проволока. Виды и применение. Производство и особенности

Содержание

Проволока. Виды и применение. Производство и особенности

Проволока – вид металлопроката, представляющий собой металлическую нить обычно круглого сечения. Обычно производится из стали, меди, алюминия, нихрома и различных сплавов.

Технология производства

Для производства проволоки используются различные металлы и их сплавы. В зависимости от их качеств и способа обработки зависят технические параметры готового изделия. К примеру, одни виды проволоки отлично проводят электричество, другие легко сгибаются, а третьи обладают упругостью. Вне зависимости от свойств применяемого металла или его сплава начальная технология получения проволоки одинакова. Сырье разогревается для получения пластичной массы. Затем путем непрерывного литья из него формируется прут, который с помощью прокатного станка калибруется в тонкую нить необходимой толщины.

Диаметр проволоки может составлять от долей миллиметров до 17 мм. Более толстое изделие уже является прутом. Сформированная нить может сразу сматываться в бухты или поддаваться дополнительной обработке. Она может покрываться цинком или полимером. Это позволяет защитить металл от окисления или создать на нем диэлектрическую оболочку.

Закаливание проволоки позволяет увеличить ее твердость и упругость. Отжиг наоборот делает ее более пластичной. Обычно такая обработка уже делается на изделиях, которые производятся из проволоки. До этого сырье термически не обрабатывается, за исключением используемого для армирования проводов, изготовления некоторых разновидностей тросов и сеток.

Полученная на производственном оборудовании проволока сматывается в бухты или ее наматывают на барабаны. Преимущественно предприятия, задействованные в ее производстве, не занимаются ее переработкой в готовые изделия. Поэтому полуфабрикат отправляется на продажу. Как и остального металлопроката, оценка ее стоимости проводится в зависимости от состава металла и массы. В розничной продаже возможна ее оценка по длине. При этом фактическое сечение на стоимость практически не влияет. Цена бухты проволоки разной толщины, но одинакового веса, почти идентична.

Где используется проволока
Данное изделие является полуфабрикатом, который применяется для изготовления различных товаров:

Преобладающая часть производимой промышленностью проволоки используется в качестве полуфабриката для получения других изделий. Небольшая доля из нее применяется как вязальный материал. Им увязывается арматура при бетонных работах, завязываются мешки и т.д.

Применение стальной проволоки

Наиболее широкое распространение получила проволока из стали. Для ее получения применяются различные марки стали. Из пружинных делают проволоку для изготовления сеток, пружин, некоторых специализированных тросов. Подобные изделия после закалки становятся упругими. При этом при сильном механическом воздействии они ломаются, поэтому для других целей неприменимы.

Из более мягких сортов стали делают проволоку для изготовления гвоздей, саморезов, винтов. Ее податливость позволяет сформировать на обрезанном стержне шляпку или резьбу. Такой материал хорошо поддается ковке. Сформированное из него изделие закаляется, что избавляет его от гибкости. В результате изготовленный метиз менее склонен к загибанию.

Производство проволоки из стали выполняется по строгим стандартам. Благодаря этому готовая продукция является полностью совместимой со станками, формирующими из проволоки метизы, сверла, звеньевые цепи и т.д.

Из стальной проволоки изготовляют струны для музыкальных инструментов, электроды для электросварки. В частности для получения первых применяется нержавеющая сталь, а для вторых обычный черный металл, который покрывается специальным напылением.

Весьма востребованный полуфабрикат плющенную ленту получают путем раскатки стальной проволоки большого сечения. Полученное в результате изделие может использоваться для изготовления лезвий для безопасной бритвы, трубок небольшого диаметра и т.п.

В целом из стали делают несколько групп проволоки:
  • Для армирования.
  • Вязальная.
  • Марочная.
  • Холодной высадки.
  • Канатная.
  • Телеграфная.

Каждая из них обладает рядом особенностей, которые делает ее идеальной для использования в специфических целях. К примеру, стальная нить холодной высадки может обрабатываться холодной высадкой, в то время как аналоги совершенно не совместимы с подобным оборудованием.

Использование медной проволоки

Доля производства медной проволоки существенно ниже, чем стальной. Это обусловлено дороговизной этого металла и его недостаточными механическими свойствами. При этом медь является одним из самых эффективных электрических проводников. Благодаря этому проволока из нее используется в качестве токопроводящих жил при изготовлении кабельной продукции.

Токопроводящие жилы могут быть сформированы из одной проволоки большого сечения или пучка тонких проволок (многожилка). Использование пучков позволяет придать готовому изделию более высокую гибкость. В частности подобные провода используются для изготовления электрических удлинителей, шнуров питания электротехники и т.п.

Кроме этого из медной проволоки состоит обмотка ротора и статора электромоторов. Благодаря природной гибкости она легко вплетается в сердцевину без образования заломов. Для предотвращения замыкания, такая струна покрывается диэлектрическим прозрачным составом. Также она используется для изготовления обмотки трансформаторов. Ее можно встретить внутри любого зарядного устройства, электросварки и т.п.

Назначение алюминиевой проволоки

Также как и медная, алюминиевая проволока является хорошим проводником. Однако при пропускании через нее электричества наблюдается более высокое сопротивление. Это делает кабельную продукцию из нее менее эффективной. Она больше нагревается, поэтому для передачи токов требуется использование проволоки большего сечения.

Применение проводов из алюминиевой проволоки встречается все реже. Она менее долговечна, больше склонна к замыканию от перегрева. В связи с этим ее преимущественно применяют для изготовления сетки рабицы, заклепок. Любую алюминиевую проволоку можно использовать как вязальную. Также из нее делают электроды для сварки алюминия.

Использование нихромовой проволоки

Из нихрома делается проволока для изготовления нагревательных элементов, в частности спиралей для электроплит, электрических горнов, обогревателей, ТЭНов. Она обладает высокой сопротивляемостью электричеству. Благодаря этому при пропуске через нее электрического тока происходит сильный разогрев металла. Прочие разновидности проволоки при использовании подобным образом плавятся, в результате чего контакт прерывается. Изделия из нихрома сохраняют свою целостность даже при нагреве докрасна.

Назначение вязальной проволоки

Практически все разновидности проволоки являются полуфабрикатом, не интересующим частного потребителя. Он практически не применим в бытовой жизни. К примеру, без наличия специализированного оборудования сделать из проволоки пружины, гвозди или сетку не получится. Единственным исключением является вязальная проволока. Она малопригодная для получения из нее каких-либо изделий, при этом ее качества дают возможность использования в различных направлениях.

В первую очередь вязальная проволока применяется для связывания стальной арматуры при работе с бетоном. Она отлично сгибается, легко перекусывается кусачками или плоскогубцами. Вязальной проволокой привязывают сетку к столбам. Возможно ее использование в качестве ремонтного материала.

Также возможно ее применение для изготовления струнных маяков для штукатурки. Для этого она натягивается возле плоскости стены до состояния звенящей струны и используется как направляющая для скольжения правила. Это позволяет разровнять штукатурку в идеальной плоскости.

К примеру, материал применяется в сельском хозяйстве для сооружения электропастуха. Для этого производится натягивание проволоки по периметру и ее подключение к электротрансформатору. В результате при контакте с таким ограждением происходит слабое поражение током, что отпугивает животных от забора.

Оценка характеристик проволоки

Качества проволоки в первую очередь отличаются от металла, из которого она изготовлена. При этом незначительные отличия состава сплава могут кардинально влиять на эксплуатационные характеристики изделия. В связи с этим оценка проводится по целому ряду характеристик:

  • Диаметр.
  • Тип покрытия.
  • Относительное удлинение при растяжении.
  • Порог разрыва при растяжении.
  • Электрическая сопротивляемость.
  • Число перегибов.

Перечисленные качества могут выступать приоритетными для одних видов проволоки и маловажными для других. К примеру, для проволоки используемой для обмотки моторов и трансформаторов, не столь важен уровень разрывного усилия.

Из названных критериев оценки рабочих качеств проволоки крайне важным является число перегибов. Оно отображает сколько раз нужно согнуть проволоку в одном месте, чтобы она сломалась. У пружинных материалов это число может составить 4 раза, а у медных или стальных вязальных может доходить до нескольких десятков раз. При этом, чем выше жесткость, тем быстрее произойдет перелом материала при механическом воздействии.

Похожие темы:

Изготовление проволоки — из древности в будущее — Компоненты и технологии

Открытие меди в ее естественной (самородной) форме было одним из множества признаков свидетельствующих о выходе человечества из эпохи каменного века. Поскольку этот металл очень мягкий, из него было легко изготавливать примитивные предметы различного назначения с помощью молотка, например ножи, мечи и другое оружие. Вскоре были разработаны методы изготовления проволоки из меди и золота. Хотя медь добывалась в рудниках и обрабатывалась бессчетными способами на протяжении многих тысячелетий, наиболее значительные усовершенствования процесса изготовления проволоки относятся только ко второй половине XX столетия. Поскольку то, что сегодня используется на практике, тесно связано с предшествовавшими разработками, данная статья посвящена этой взаимосвязи, как с точки зрения истории, так и с точки зрения перспектив развития металлообработки. В настоящее время бульшая часть проволоки повсеместно изготавливается из прутка (катанки), получаемого методом непрерывного литья. В этой связи рассмотрим кратко историю развития процесса производства медной проволоки.

Рис. 1. Хронология начала применения различных металлов

История использования меди

Человечество, вероятно, начало использовать медь примерно за 9000 лет до нашей эры, когда египтяне открыли медь в ее естественном самородном виде на острове Кипр (Cyprus). Первоначально этому металлу дали название «aes cyprium», которое впоследствии сократилось до «cuprum» (Сu — медь). Впоследствии появилось английское слово «copper» (медь) и химический символ Cu. В алхимии для обозначения меди использовался символ , который был также символом женщины, поскольку Венера, богиня любви, как считалось, родилась на Кипре. Хронология первого применения меди и других широко используемых в промышленности металлов представлена на рис. 1. Как можно было ожидать, несколько первых обнаруженных металлов были найдены в естественном (самородном) виде. Некоторые из ранее известных письменных описаний добычи меди включены в библейский Ветхий Завет. Они относятся примерно к 1400 году до нашей эры. Четыре соответствующих главы с указанием номера стихов, имеющие отношение к таким металлургическим комментариям, перечислены в таблице 1.

Таблица 1. Упоминания о меди и добыче металлов в Библии

Раздел Священного писания Релевантный текст
Иов 28:1 «…медь выплавлялась из руды…»
Второзаконие 22:11 «…земля, где скалы из железа и где вы можете выкапывать медь из холмов.»
Изекиль 22:13 «.как люди бросают серебро, медь, железо, свинец и олово в печь, чтобы плавить это с огненным дыханием.»
Изекиль 24:6 «.держать пустой сосуд на углях до тех пор, пока он не нагреется и его медь не засияет так, что все примеси смогут улетучиться прочь.»

Очевидно, что в те времена были также хорошо известны способы очистки металлов. Крайне мало технических сведений было задокументировано до опубликования на латинском языке в 1556 г. книги «De Re Metallica», написанной Георгиусом Агриколой из Саксонии, в которой детально был описан процесс переработки медной руды. Процессы и методы переработки, приведенные в этой книге, начали широко распространяться. В этот период времени в Германии начали использовать плавку руды для удаления серы. В 1869 г. самым крупным производителем меди в мире была мичиганская компания Calumet and Hecla с годовым объемом производства около 6200 тонн. Первой шахтой в США, где годовая добыча меди превысила 50 000 тонн, была «Анаконда» (Anaconda). Двадцатое столетие характеризовалось разработкой и широкомасштабной добычей низкосортных медных руд

Изготовление проволоки в древности

Для изготовления проволоки на ранних стадиях развития ювелирного дела использовались медь естественного происхождения и такие драгоценные металлы, как золото и серебро. Изучение образцов проволоки, найденных при археологических раскопках, показало, что эти металлы не обрабатывались обычными методами волочения, то есть про-тягиванием через конические отверстия в фильере. Золотое ожерелье, принадлежавшее египетскому фараону, правившему примерно в 2750 году до нашей эры, было изготовлено с применением техники ковки, то есть посредством нарезки листов металла на тонкие полоски и последующего придания им круглой формы с помощью молотка. Поскольку эта техника была крайне примитивной, диаметр проволоки менялся в значительных пределах по всей ее длине. Ковка, без сомнения, использовалась в течение многих веков. Подтверждение этого приведено в «Исходе» (вторая книга «Ветхого Завета», глава 39, стих 3): «…и они разбивали золото в тонкие пластины и разрезали их на полоски, чтобы продолжать работать». Закручивание полосок было другим способом, который использовали египтяне в древности для изготовления тонкой проволоки для украшений. Металлические листки из меди или золота резались на тонкие полоски или ленты. Как показано на рис. 2, эти полоски или с самого начала сворачивались в трубочку, или закручивались вдоль оси ленточки.

Рис. 2. Формирование проволоки из тонких лент:
а) сворачиванием; б) закручиванием

В обоих этих методах скрутки затем из ленточки формировалась проволока — холодной плоской прокаткой или протягиванием через грубую фильеру. Техника закручивания использовалась примерно до 1000 года нашей эры. Третий предшественник современной техники волочения также начинался с тонких ленточек. Они непосредственно протягивались через фильеры, которые изготавливались или из натуральных камней, в которых делались отверстия, или из мягких металлов — таких как медь или железо. Эти ленточки превращались в трубочки после одной или двух протяжек через фильеру. Из этих трубочек затем формировалась круглая проволока протягиванием за один-два прохода через отверстие нужного диаметра. Затем из трубочек формировалась круглая проволока, на которой обе кромки ленточки образовывали шов. Иногда проволока из драгоценных металлов изготавливалась протяжкой через отверстия, сделанные в пластинках из этих же металлов. Поскольку проволока и фильеры изготавливались из одинаковых металлов, фильеры позволяли производить небольшое число протяжек, так как они чрезвычайно быстро изнашивались. Затем они подвергались переплавке или переработке другого вида. К сожалению, древние металлические фильеры не восстанавливались и, без сомнения, подвергались вторичной переработке. В руинах г. Помпеи после его разрушения (в 79 году нашей эры) была обнаружена бронзовая проволока. Однако тщательные исследования этого материала показали, что изготовлена она была, вероятно, примерно на 600 лет раньше. Трудно сейчас ответить на вопрос, как изготавливалась проволока из бронзы — ковкой или волочением? Для того чтобы в те времена делать сплав меди с оловом, использовались мехи для доведения температуры пламени до 1090 °C. В упоминаниях о проволоке, изготовленной в Китае и Индии, предполагается, что ее производство относится к периоду времени между 2200 и 2000 годами до нашей эры.

Рис. 3. Волочильная установка
с использованием энергии движущейся воды,
которую применяли в Европе в средние века

Изготовление проволоки в средневековье

В средние века для изготовления проволоки впервые начали применять волочильную доску, в которой был сделан ряд отверстий с постепенно уменьшающимся диаметром для того, чтобы при протягивании проволоки через них постепенно уменьшать ее диаметр до нужной величины. Первые сведения о таком типе инструмента были получены в результате археологических раскопок. Эти сведения относятся к периоду 700–900 годов нашей эры. Честь изобретения этой техники приписывается норвежским викингам. Считается, что в период между VI и X веками венецианцы и другие итальянцы знали об этом методе протягивания проволоки через отверстия в волочильной доске.

Честь первого письменного описания современной техники волочения проволоки приписывается немецкому монаху по имени Теофилус. Примерно между 1000 и 1100 годами нашей эры он написал манускрипт на латинском языке, где дал описание волочильной доски с конически сходящимся отверстием, подобной повсеместно используемым в современном производстве проволоки. Его описание также аналогично описанию волочильных досок, найденных в одной из могил викингов. Волочильная доска была изготовлена из бронзы с железными вставками с отверстиями для протягивания проволоки. После Теофилуса появилось множество письменных описаний процесса изготовления проволоки. В средние века изготовление проволоки часто производилось волочением с помощью качелей («swing drawing»). К XIII веку ремесленников начали называть «Schockenzeiher», или коперными волочильщиками. Волочильная доска с фильерами вставлялась в пень или кусок дерева. Волочильщик сидел на качелях, при движении вперед он захватывал клещами или плоскогубцами проволоку около отверстия в волочильной доске. Во время движения качелей назад волочильщик протягивал проволоку через это отверстие. Процесс продолжался до тех пор, пока вся проволока не была протянута через волочильную доску. Хорошим результатом этого процесса считалось протягивание через волочильную доску одного фута (30,48 см) проволоки за один проход. Тонкая проволока изготавливалась последовательной протяжкой через ряд уменьшающихся по диаметру отверстий: до тех пор, пока не оказывалось возможным наматывать ее на катушку. Такой тип процесса изготовления проволоки использовался в Германии вплоть до середины XVII века. Первый существенный технический прорыв в волочении проволоки имел место в Германии около 1390 года, когда энергия движущейся воды была использована для осуществления качельного способа волочения. Клещи (зажим) приводились в движение воротом (эксцентриком) на оси рабочего колеса. В это время использовались простые устройства с вращаемым водой рабочим колесом, подобные изображенному на рис. 3.

Рис. 4. Приспособления, которые использовались в XVII в. для ручного изготовления проволоки

Этот опыт оказался настолько успешным, что многие водяные мельницы в период времени около 1390 года были превращены в установки для волочения проволоки. Для облегчения ручного труда и повышения производительности были приспособлены разнообразные вспомогательные средства — приемники-отдатчики, барабаны, катушки и т. п. Некоторые приспособления, которые применялись в конце XVII века, изображены на рис. 4. Хотя можно предположить, что при изготовлении проволоки использовались смазывающие средства, об этом ничего не было известно приблизительно до 1650 года, когда появилось сообщение о применении смазки из местечка вблизи Дюссельдорфа (Германия). Было обнаружено, что человеческая моча уменьшает трение при волочении проволоки настолько эффективно, что ее применение дает возможность легко изготавливать твердую стальную проволоку. Было установлено, что несвежее пиво также является хорошей смазкой, уменьшающей трение. Современные аналитические средства вроде хромотографии в настоящее время используются для анализа металлов, найденных в ходе археологических раскопок, для выяснения, использовалась ли органика (органические вещества) в качестве смазочных средств при волочении проволокии

Начальные этапы современной техники изготовления проволоки

Механизмы, приводимые в действие паром, внедрялись в практику медленно и постепенно. Соответственно, и ручные, и приводимые в действие энергией движущейся воды устройства широко использовались в XIX веке. В США производство проволоки началось только после Американской революции, когда оказалось невозможным получать проволоку из Англии. К 1834 году в США работали только три предприятия с годовым объемом производства 15 тонн. В XIX веке потребность в проволоке существенно возросла. После изобретения в 1820 году телеграфа потребовалось большое количество медных проводов для передачи сигналов по линиям телеграфной связи. Изобретение телефона в 1876 году стало еще одной причиной рывка в развитии производства проводов. В ранних телеграфных и телефонных линиях использовались железные провода. Затем медь вытеснила железо, поскольку обеспечивала существенное увеличение электропроводности, но только провода из меди, изготовленные волочением с наклепом, могли быть подвешены между столбами без провисания или обрывов. В это время полностью отожженная медь имела недостаточную прочность на разрыв для использования таким образом. Последующая разработка проводов в виде витой пары не только обеспечила уменьшение помех и потерь в линии, но и привела к удвоению необходимого количества меди. Об изготовлении волочильных досок до начала XIX века мало что известно. Бульшая часть этих приспособлений изготавливалась из железа литьем. Фактически железные волочильные доски, подобные представленной на рис. 5, использовались еще и в начале XX века. Отверстия в них имели такую же форму и размеры, как и в современных волочильных фильерах. В США приблизительно в 1870 г. начали в промышленных масштабах применять фильеры с алмазами, а в 1928 г. — и с карбидом. Джон Рэблинг стал в США национальной знаменитостью благодаря полученным им многочисленным патентам на свои изобретения, разработку стальных канатов и строительство многих подвесных мостов, включая Бруклинский. Он был связан с компанией в Dollar Bay, производившей провода и кабели из меди. На рис. 6 представлена фотография, сделанная на этом заводе в начале XX столетия. В те времена хорошему качеству поверхности уделялось гораздо меньше внимания, чем в современном производстве проволоки.

Рис. 5. Железная волочильная доска, применявшаяся в первой половине ХХ в. (в нижней части рисунка — силиконовый оттиск волочильного отверстия, профиль отверстия аналогичен используемому в современных фильерах)

Непрерывное изготовление прутков из меди: история

До конца XX века литые заготовки для изготовления проволоки были основной формой очищенных медных отливок, которые производили из катодов, получаемых на очистительных установках. Электролитическая технически чистая медь (ЕТР) была основным металлом, использовавшимся для изготовления этих литых заготовок. Обычная установка для процесса литья содержала горизонтальный поворотный стол или круг с многочисленными открытыми литейными лотками, расположенными по касательной к окружности. Разливка меди осуществлялась без остановки круга. Получение плоской поверхности отливки обеспечивалось регулировкой содержания кислорода, что, в свою очередь, влияло на плотность отливки благодаря взаимодействию газа с металлом. Полученные таким образом отливки, предназначенные для последующей прокатки и вытягивания проволоки, имели вес около 100 кг, их концы имели конусную или остроконечную форму. Иногда (при необходимости) опорная поверхность очищалась от включений окислов меди. Заготовки подвергались горячей прокатке в воздушной атмосфере для завершения процесса изготовления катанки. После протравливания катанки в ванне с серной кислотой концы бунтов соединялись с помощью контактной сварки для получения больших длин катанки. К основным проблемам обеспечения требуемого качества катанки, присущим этому технологическому процессу, относятся: многочисленные повреждения мест сварки, множественные загрязнения частицами стали во время горячей прокатки, малая длина бунтов, макроликвация по всей длине бунта. Ликвация (от лат. liquatio — разжижение, плавление) в металлургии — сегрегация, неоднородность химического состава сплава, возникающая при его кристаллизации. Кроме того, имеет место различная степень отжига меди от начала до конца бунта вследствие различия температур во время горячей прокатки. Значимость этих проблем существенно снизилась после изобретения процесса непрерывного литья. Краткая хронология истории непрерывного литья и основные события, связанные с изготовлением медной катанки, представлены в таблице 2.

Таблица 2. Историческая хронология промышленного
непрерывного литья меди

Тип Авторство Год
Основная техника
Ременно-приводные установки Лайман 1882
Дэниэлс 1886
Проперци 1948
Риджамонти 1953
Двухременные установки Хэйзелет 1948
Хантер Дуглас 1951
Осциллирующий процесс плавки Юнгханс 1933
Тиссманн 1950
Производство медных заготовок
Первая американская ременно-приводная установка W.E./S.W совместно c Properzi Caster 1963
Первая установка вертикального разлива Outokumpu 1969
Первая наклонная система G.E. 1970
Первая двухременная система Controid 1974
Ограничения ASTM на примеси ASTM 1983

В конце XIX столетия делались многочисленные попытки производить цветные и черные металлы методом непрерывного литья. Бульшая часть этих попыток окончилась неудачей из-за чрезмерного трения скольжения между начальной затвердевшей поверхностью слитка и поверхностью формы, что приводило к разрыву и вытеканию расплавленного металла на эту поверхность. Относительное перемещение этих двух компонентов было устранено в 1882 г. Был разработан процесс непрерывной плавки с помощью ремня, который располагался в канавке, сделанной в боковой поверхности вращающегося круга. В 1948 г. первый промышленный процесс был разработан Проперци для свинца и цинка, и теперь он известен как процесс «круг – привод» («wheel and belt»). Одна из модификаций этого процесса была успешно внедрена в 1963 г. на дочернем предприятии компании Western Electric. В течение нескольких следующих десятилетий для производства меди были разработаны технические дополнения к этому процессу. К ним относятся: двухременная литейная машина Controid, система Southwire c пятью вращающимися литейными кругами (SCR), конструкция Эссекса с тремя литейными кругами, в которой используется сифонная труба для подачи расплавленного металла, и две литейные установки типа Upcast компаний Outokumpu и Rautomead для производства отливок, не содержащих кислород. Почти все заготовки для изготовления меди ETP производятся в ходе непрерывного процесса, включающего следующие стадии: загрузка, плавка, литье, горячая прокатка, удаление внешнего слоя, травление для удаления кислородной поверхностной окалины, индукционный контроль готового прутка, натяжение и смотка в бунт. Вследствие низкой скорости литья бескислородной меди, при котором происходит однонаправленное затвердевание, горячая прокатка не может осуществляться в ходе общего непрерывного процесса.

Принципы металлургии

Затвердевание

В основе промышленного производства заготовок из чистой электролитической меди ЕТР лежат принципы химических реакций «газ – металл» в расплавленной меди. Когда медь переходит из жидкого состояния в твердое, происходит усадка 4,1%. Если этот факт игнорировать, весьма вероятно образование в слитке больших пустот и макропор. Для предотвращения этой усадки в металл вводится кислород, который вступает в реакцию с водородом и серой. При этом образуется пар и диоксид серы в газообразной форме. Источником как водорода, так и серы может быть катод, в который они могут попадать из электролита или из газов, образующихся в горне. Пар и диоксид серы остаются в слитке, образуя там внутренние пустоты. Следовательно, плотность слитка после литья меньше, чем плотность кованой меди. Если пустоты имеют небольшие размеры и распределены однородно, они могут быть ликвидированы примерно за два прохода через прокатную установку.

Посторонние включения

До середины XX века было опубликовано много результатов исследований влияния остаточных примесей (остаточного загрязнения) на качество высокочистой меди. Посторонние включения могут оказывать отрицательное воздействие на медь, снижая электропроводность и величину удлинения спирали (SEN) из отожженной проволоки, увеличивая необходимое время и температуру отжига, уменьшая эластичную пружинящую способность и способность принимать нужную форму [9]. Некоторые из этих элементов могут также вызывать появление трещин и увеличивать хрупкость. В общем, Se, Te, Pb и S являются наиболее вредными элементами при производстве высокочистой меди. В таблице 3 даны сведения о результатах воздействия каждого из 11 наиболее распространенных элементов на такие характеристики чистой меди, как температура отжига, коэффициент удлинения спирали и электрическое сопротивление, в случае, когда каждый из этих элементов добавляется в медь по отдельности [9].

Таблица 3. Влияние примесей

Элемент Повышение температуры отжига, °F/ppm Уменьшение растяжения спирали, мм/ppm Увеличение электрического сопротивления, мкОм-см/ppm
Сера 15 10 0,0016
Селен 15>50 0,0097
Теллур 10 20 0,0034
Свинец 6 5 0,0009
Висмут 15>30
Сурьма 3 3 0,00029
Мышьяк 3 4 0,00056
Олово 5 0,00016
Железо 1 0,0012
Никель 1 0,00014
Серебро 1 2 0,0002

Необходимо заметить, что если прогнозируемые свойства промышленной меди ЕТР основаны на химическом анализе, проявление отдельных элементов не всегда совпадает с результатами измерений характеристик готовой проволоки. Причиной этих отклонений являются два фактора. Во-первых, некоторые примеси могут вступать друг с другом в химическую реакцию, как, например, свинец и сера, образуя нерастворимые интерметаллические соединения. Во-вторых, что более важно, взаимодействие многих твердотельных примесей с кислородом приводит к образованию нерастворимых оксидов металлов. Максимальное влияние на поведение и свойства меди примеси оказывают тогда, когда они находятся в меди в состоянии твердого раствора. Часто полезным альтернативным методом прогнозирования поведения меди является использование уравнений регрессии применительно к химическому анализу. Одно из таких уравнений имеет следующий вид:

RF = 34,7 + 0,25Pb + 2,73Bi + 2,18Sb + 4,62Te + 0,88Ni + 028Fe,

где содержание примесей дано в ppm, RF — твердость F по Рокуэллу (определяется вдавливанием конического наконечника) для исходной литой заготовки. Для испытания заготовка вначале подвергается холодной прокатке до диаметра, составляющего 30% от начальной величины, с последующим отжигом в течение 15 минут в ванне с постоянной температурой 275 °C до начала измерений твердости. Если число твердости F менее 60, то медь классифицируется как слабо отожженная.

Кислород

Как отмечено в предыдущем разделе, введение кислорода в расплав связано с необходимостью регулирования пористости в выплавленной заготовке ЕТР посредством управляемой во время литья и отверждения усадке. Поскольку кислород является весьма эффективным средством удаления остаточных примесей, бульшая часть их вредных проявлений может быть устранена. В результате взаимодействия между кислородом и другими элементами можно улучшить проводимость, увеличить степень отжига и способность к формовке [10]. Например, на рис. 7 показановлияние кислорода на электрическую проводимость некоторых сортов меди в отожженном состоянии.

Рис. 7. Влияние наличия кислорода на электропроводность отожженной меди

Для коммерческой проволоки с чистотой четыре девятки (99,99%) начальная концентрация кислорода 200 ppm вызывает увеличение проводимости вследствие эффекта очищения. После завершения вышеупомянутой реакции в твердотельном состоянии проводимость уменьшается линейно вследствие увеличения объема фракций оксидов меди. На рис. 7 также видно, что проводимость меди OF и ETP примерно одинакова. Медь ЕТР, производимая в настоящее время непрерывным литьем, изготавливается, по большей части, с содержанием кислорода в диапазоне от 125 до 500 ppm. При более низком содержании кислорода возрастает склонность к появлению трещин при высоких температурах из-за повышения хрупкости вследствие недостаточной связи кислорода и водорода. Если содержание кислорода выходит за границы указанного диапазона, происходит увеличение содержания равновесных оксидов меди. Следовательно, общая вязкость проволоки уменьшается, и вероятность возникновения трещин из-за повышения хрупкости во время волочения возрастает.

Скрап

Медные заготовки высшей чистоты обычно используются для изготовления обмоточных проводов, к которым предъявляются наиболее жесткие требования. Следовательно, для такого специфического применения рекомендуются высокочистые электролитически очищенные катоды. Разнообразные составы, связанные с некоторыми промышленными сортами ETP, OF и сортами очищенной в пламени меди (FRTP), представлены в таблице 4. В последнее десятилетие для менее критических областей применения (например, провода для строительства) медная проволока изготавливалась из медных отходов (скрап) [11]. Предполагая, что для уменьшения содержания общего содержания примесей используется некий вид очищения в огне, возможно в этом случае получить электропроводность 101% IACS. Процентная проводимость медного образца проволоки (%IACS) была рассчитана делением сопротивления медного стандарта (International Annealed Copper Standard) на сопротивление образца при 20 °C. При расчетах можно использовать сопротивление объема или массы. Литейная заготовка, которая была изготовлена с использованием очистки в пламени на заводе La Farga Lacambra в Испании, была раздроблена на стержневой мельнице и затем переработана в проволоку отрезками большой длины c использованием многопроходных волочильных установок.

Таблица 4. Химический состав коммерческих сортов меди ETP, OF и FRTP

Элемент C1100 ETP C11040 ETP C11045 ETP C10100 OFE C12500 FRTP
ppm, max ppm, max ppm, max ppm, max ppm, max
Медь, % 99,9 99,9 99,99 99,9 99,88
Теллур 2 2 2
Селен 2 2 3
Висмут 1,0 0,5 1,0 30
Сурьма 4 4 4 30
Мышьяк 5 5 5 120
Олово 5 5 5
Свинец 5 5 5 40
Железо 10 10 10
Никель 10 10 10 500
Сера 15 15 15
Серебро 25 25 25
Ртуть 1
Кадмий 1
Фосфор 3
Цинк 1
Магний 0,5
Кислород 100-650 125-600 5

Улучшение качества заготовок для изготовления проволоки

В последние десятилетия происходило постоянное улучшение качества медных заготовок для изготовления проволоки, обусловленное, кроме прочего, успешным внедрением методов статистического контроля процесса производства, Six Sigma («шесть сигма») и Lean Manufacturing (наклонная линия производства). Отметим несколько успешных разработок, относящихся к недавнему прошлому.

Неразрушающий контроль с помощью вихревых токов

Почти в каждой линии непрерывного литья заготовок применяются электромагнитные методы автоматического контроля (с использованием вихревых токов) качества поверхности заготовки после горячей прокатки. В некоторых системах контроля для выявления трещин, возникающих при высокой температуре, используется катушка, через которую проходит горячая заготовка внутри прокатной установки. Для обеспечения повышенной чувствительности коэффициенты заполнения должны быть не менее 60%. Этот бесконтактный, неразрушающий метод успешно применяется при высоких скоростях работы прокатного оборудования. Смачивающие устройства обычно необходимы для предотвращения возникновения избыточного шума и вибраций. В стандарте ASTM даны рекомендации по практическому применению этого метода. При предположении, что дефекты располагаются вблизи поверхности, оборудование контроля позволяет обнаруживать расслоение, трещины и посторонние включения.

Удаление окалины

В результате воздействия на нагретую заготовку атмосферы на ее внешней поверхности очень быстро образуется тонкий слой окалины (оксид, содержащий двухвалентную медь) толщиной около 100 000 Е (104 нм). Так как адгезия окалины к основному металлу при температуре около 800 °C весьма слабая, ее отделение осуществляется без труда. Поэтому в линиях непрерывного плавления меди используются насосы высокого давления на входе в установку чернового проката для распыления прокатной эмульсии на горячую движущуюся отливку. Несмотря на то, что почти 90% окалины легко может быть удалено под воздействием эмульсии, распыляемой под большим давлением, для обеспечения высокого качества катанки необходима дополнительная очистка. В некоторых больших линиях непрерывной разливки, которые работают в комплексе с установками для очистки меди, в оборудовании горячей прокатки все еще используется водный раствор серной кислоты и водный раствор для травления. С другой стороны, в большей части линий непрерывной плавки и разливки меди движущаяся горячая отливка помещается в водный раствор спирта. Спирт испаряется при высокой температуре, при этом образуются водород и угарный газ. Эти газы вступают в реакцию с окалиной из оксида меди на поверхности отливки, при этом образуется тонкий поверхностный слой меди. Схематическое представление методов воздействия на заготовку серной кислотой или спиртом для химического удаления или уменьшения толщины окалины дано на рис. 8. Если процесс уменьшения толщины окалины не доведен до конца, на субслое оксидов меди образуется тонкий слой меди. Время реакции, необходимое для уменьшения толщины слоя окалины на 5000 Е (500 нм), составляет несколько секунд. Хотя другие органические компаунды могут формировать газы, уменьшающие толщину слоя окалины, изопропиловый спирт (IPA) является наиболее эффективным органическим веществом, применяемым при производстве медной проволоки.

Рис. 8. Удаление поверхностных слоев окислов на катанке травлением в кислоте или с помощью спирта

Контроль поверхностных оксидов и мелких фракций

Слои окалины на поверхности меди являются высокоабразивными и могут приводить к образованию на ней мелких твердых включений, к износу волочильных фильер, плохой паяемости, частым обрывам проволоки и плохой адгезии эмали с голым медным проводником. Толщина окислов однои двухвалентной меди количественно определяется методом электролитического уменьшения толщины с помощью постоянного тока [7, 13, 14]. Когда методом литья впервые была получена заготовка для изготовления катанки, типовые величины толщины оксидной окалины лежали в диапазоне от 6000 до 8000 Е. В настоящее время бульшая часть производителей катанки способна изготавливать продукцию с толщиной пленки окислов менее чем 300 Е (30 нм). Мелкие фракции меди можно обнаружить на заготовке после горячего проката методом гравиметрического анализа. После проведения испытаний нескольких различных образцов на кручение, выпавшие включения удаляются с помощью ультразвуковой вибрации и затем взвешиваются после просушки. Соотношение между весом включений и поверхностных окислов имеет следующий вид:

Wf /Wr×16-6 =8.73+0.493×SO,

где Wf — вес включений, Wr — вес заготовки, SO — толщина пленки в ангстремах. Так как оксидная окалина на заготовке после травления удаляется химическим способом, количество остаточных включений часто меньше, чем при очищении заготовки спиртом

Прогнозирование и технологии будущего

Возможно, что последнее десятилетие было периодом самого большого числа изменений в производстве катанки, проводов и кабелей по сравнению с любым другим периодом его развития со времен древности. В таблице 5 дан перечень важных событий, связанных с медью и волочением, относящихся к истории в целом.

Таблица 5. Хронология событий в истории человечества, связанных с медью и изготовлением проволоки

Годы Событие
До нашей эры
8000-9000 Открытие человеком самородной меди
~5000 Начало истории изготовления проволоки
~4600 Изготовлены образцы проволоки (найдены в 1901 г. н. э.)
4700-3800 Изготовлена бронза сплавлением меди и олова
4000 Египтяне выковали проволоку из тонкого металлического листа и протянули ее через отверстие
3500 Медная проволока изготовлена в Египте
2900 Изготовлена проволока сплавлением кованых коротких кусков проволоки
2750 Ожерелье фараона из Денбараба изготовлено из овальных золотых пластин, соединенных цепочкой из золотой проволоки
2200 Проволока изготовлена в Китае
2000 Проволока изготовлена в Индии
1544 Одежда, тканая из металлических нитей весом 36 фунтов, найдена в могиле римского императора Онориса
~1490 В «Исходе» (39:3) описано изготовление проволоки из тонких металлических пластин с помощью молотка
1400 Греки начали использовать железо
1000 Бронзовую проволоку начали делать в Шотландии (найдена при раскопках в 1879 г.)
800 Канат из бронзовой проволоки найден в Нивеях (образец сейчас находится в Британском музее)
500 Изготовлен канат из бронзовой проволоки. Найден при раскопках Помпеи
400 В Китае начали изготавливать канаты из проволоки
Наша эра
79 Разрушение Помпеи (в музее Неаполя сейчас находится образец проволоки диаметром 0,314 дюйма и длиной 15 футов)
300-400 Изготовлена примитивная фильера для протяжки проволоки во Франции
700 Изготовление гвоздей начато в Бельгии
700-800 Викинги в Норвегии использовали фильеры (предполагается)
VI-X век Венецианцы и итальянцы использовали волочильные доски для изготовления проволоки
1000-1100 Теофилус дал описание волочильной доски
1260 Проволока изготовлена в Европе методом холодного волочения
1300 Введено понятие поврежденной поверхности
1350 Рудольф из Нюремберга использует водно-колесный механизм для изготовления проволоки
1370 Ковка проволоки все еще используется в Нюремберге
1486 Леонардо да Винчи (?) спроектировал прокатный станок
1540 В «Пиротехнике» Вануччо Бирингуджио дан чертеж проволочного стана
1556 Георгиус Агрикола в книге «De Re Metallica» описал добычу меди
1564 Волочильная установка этого времени демонстрируется в музее Клюни, в Париже
1600 Йохан из Альтены (Германия) начал волочение стальной проволоки
1624 Волочение проволоки начато в Швеции
1650 Впервые в Америке изготовлена проволока; высокоуглеродистая проволока изготовлена волочением в Германии
1726 Изобретен плоский провод для одежды (в Швеции)
1728 Катанка изготовлена с помощью рифленого ролика во Франции
1754 Англичанин Генри Корт строит первый прокатный стан для железа
1775 Первый завод для производства проволоки в г. Норвич, шт. Коннектикут
1820 Морзе изобрел телеграф, в Филадельфии открыта фирма по изготовлению шляп на витках проволоки
1821 За год в США изготовлено 250 тонн проволоки
1834 Три завода по изготовлению проволоки открыты в США с производительностью 15 тонн в год
1840 Реблинг изготавливает первый канат из проволок в США
1855 Браун и Шарп предложили систему калибров
1858 Американский стандарт калибров проволоки, предложенный Брауном и Шарпом, принят Ассоциацией производителей латуни
1863 Сорби применил микроскоп для исследования металлов; Бессмер опробовал способ непрерывного литья заготовок
1867 Реблинг начинает строительство Бруклинского моста
1886 Во Франции открыты карбиды и предложены методы их получения
1889 Запатентовано покрытие стали медью
1908 Кулидж из G.E. проводит лабораторные испытания установки по волочению проволоки из вольфрама
1928 Фильеры из карбида начали применяться в США для волочения
1930 Основана Ассоциация производителей проводов
1948 Описание характеристик отожженной меди представлено компанией Cook Engineering
1965 Справочник по стальным проводам выпущен Ассоциацией производителей проводов и кабелей (WAI)
Производство проводов и кабелей

Объединения, поглощения и приобретения производящих компаний будут продолжаться, приводя к все большему сокращению объемов производства. Глобализация не ослабеет, она будет распространяться на Азию и сохранять темпы распространения в Северной Америке. Во многих исследованиях прогнозируется постоянное снижение потребностей на рынке проводов для строительства и кабелей. Дешевый импорт проводов приведет к торговому дефициту изолированных проводов в США.

Технология

Затраты на исследования и разработки, как часть прибыли, снижаются в течение нескольких лет, и вероятно, эта тенденция сохранится и в будущем. Как следствие, будет ощущаться нехватка ученых и студентов, подготовленных к работе в кабельной промышленности. Однако нет оснований считать, что это приведет к заметным переменам. Одновременно с перемещением производства в страны Азии, поставки продукции откуда идут по более низким ценам, будет наблюдаться и исход в этом же направлении технических талантов. Бульшая часть азиатских стран вкладывает деньги и ресурсы в инфраструктуры своих локальных университетов, которые затем будут узурпировать технологии, разработанные в США. Дальнейшее совершенствование производства будет продолжаться как следствие акцентированного внимания к разработкам нового технологического оборудования. Компьютерное моделирование является очень полезным инструментом, который доступен уже на протяжении некоторого времени, однако оно с трудом находит себе применение в этой отрасли промышленности.

Альтернативные материалы

Несколько лет назад высокочистый алюминий начали рассматривать в качестве замены медных сверхпроводников, работающих при криогенных температурах. Однако в ближайшем будущем такая замена маловероятна. С другой стороны, значительный коммерческий интерес проявляется к оптическим кабелям. Использование меди в телекоммуникационных применениях за последние несколько десятилетий уменьшилось. Оптические волокна успешно применяются как в протяженных сетях, так и в коротких линиях передачи. В настоящее время оптическое волокно интенсивно внедряется в линиях абонентского доступа в сетях телефонной связи, в частности, в линиях, соединяющих локальные станции с распределительными узлами, расположенными в непосредственной близости к абоненту. Установка оптических кабелей для этих целей будет существенно интенсифицироваться. Например, затраты компании Verizon Communications (США) на замену медных кабелей в ее телефонной сети составляют приблизительно $23 млрд, что дает компании возможность предоставлять абонентам доступ к кабельному телевидению и высокоскоростному Интернету. И реализация этого проекта под названием FIOS будет продолжена. Другая известная компания — American Telephone and Telegraph (AT&T Corp.) — модернизирует свою сеть, прокладывая оптические кабели до границ большинства зон, где сосредоточены жилые здания, но до абонентов сигналы будут передаваться по существующим медным линиям.

Производство заготовок для изготовления катанки

Похоже, что литейное производство в Северной Америке больше не расширяется. При этом в Китае и Индии продолжается установка нескольких новых систем. Определенные долгосрочные перспективы развития этого рынка открываются в Африке, где почасовая оплата труда низкая. С точки зрения развития технологии, задачи по повышению качества поверхности проволоки будут оставаться в центре внимания, в том числе — уменьшение количества посторонних включений и минимизация поверхностных оксидов. Приоритет будут иметь работы по совершенствованию методов неразрушающего контроля. В итоге должен быть разработан такой метод, который позволял бы осуществлять непрерывный мониторинг макропор в центре заготовки. И ультразвуковые, и электромагнитные акустические преобразователи хорошо работают в лабораторных экспериментах и, следовательно, перспективны с точки зрения применения в будущем.

Медная проволока

Улучшение качества поверхности будет достигнуто как следствие повышения требований к качеству высокоскоростной передачи сигналов речи и данных. Методы неразрушающего контроля будут использоваться более часто в процессе производства проволоки, в том числе и при производстве проволоки, имеющей небольшой диаметр. Будут повышаться требования к пластичности материала исходной заготовки и продолжатся усилия по достижению «нулевого» уровня дефектов. Особое значение будет уделяться гармонизации стандартов и технических требований как результат растущей глобализации в промышленности. В настоящее время весьма жесткие требования предъявляются к проводам для обмоток импульсных магнитов в отношении обеспечения упругого последействия, хороших свойств формования обмоток и высокой электропроводности. Кроме того, могут повыситься требования к величине минимальной прочности на разрыв, связанной со способностью проволоки к формованию и необходимостью предотвращения избыточного натяжения проволоки при высокоскоростном формировании обмотки. Автомобильная промышленность десятилетиями проявляет заинтересованность в применении проводов уменьшенного диаметра для снижения веса машин. В будущем можно ожидать, что именно такие провода и будут производиться. Несколько комментариев, касающихся использования медной проволоки с чистотой четыре девятки для изготовления проводов для промышленного применения. Несмотря на то, что изготавливается медь с чистотой шесть девяток, правда, в небольших количествах, ее стоимость крайне высока и, вероятно, в ней нет нужды, если речь идет о большинстве стандартных областей применения, таких как электромагниты, провода и кабели для строительства и телекоммуникаций. Более того, электропроводность обоих материалов практически одинакова при той же самой температуре. Главным преимуществом материала очень высокой чистоты является повышенная электропроводность при криогенных температурах. Следовательно, маловероятно, что стандарты для меди будут распространены за пределы минимального значения тока 101% IACS. И наконец, уместно заметить, что сейчас в производстве проводов и кабелей наблюдается значительный спад, но оптимистические ожидания в отношении ближайшего будущего имеют реальные основания.

Примечание. Впервые этот материал был представлен в виде доклада на 77-й ежегодной конференции WAI (WAI’s 77th Annual Convention), г. Кливлэнд, штат Огайо, США, в мае 2007 г., затем в журнале Wire Journal International, в июне 2007 г.: Horace Pops. «Processing of wire from antiquity to the future»

Литература

  1. Carroll D. L. American Journal of Archaeology. 1972. 76 (3).
  2. Ogden J. Jewelry of the Ancient World. New York, Rizzoli International Publications, 1982.
  3. Williams C. R. Gold and Silver Jewelry and Related Objects. New York: The New York Historical Society, 1924.
  4. Lewis K. B. Wire and Wire Products. 1942. 17 (1).
  5. Salter R. The Metallurgy of Archaeological Wire: a Tool for the Modern Metallurgist // Wire Journal International. August 2006.
  6. Butts A. Copper. Reinhold Publishing Company. New York, 1954.
  7. Non Ferrous Wire Handbook, Vol. 3. Wire association International. 1995. 1–5.
  8. Philips A. J. The Separation of Gases from Molten Metals. Trans. Am. Inst. Mining Met Engrs, 171, 1947.
  9. Pops H. Copper Rod Requirements for Magnet Wire // Wire Journal International. 1987. May.
  10. Pops H., Holloman J. Effects of Oxygen Concentration on Recrystallization Behavior of Copper Wire // Wire Journal International. 1994. May.
  11. Guixa O., Garcia M. Futher Steps in Copper Scrap refining and Subsequent CCR Copper Rod Production. Wire Association Technical Conference, Stresa, 1997.
  12. ASTM Standard Practice E1606. The electromagnetic (Eddy — Current) Examination of Copper Redraw Rod for Electrical Purposes.
  13. Pops H., Henessy D. The Role of Surface Oxide and its Measurement in the Copper Wire Industry // Wire Journal International. 1997. March.
  14. Baker G., Pops H. Analysis and Automation of Copper Surface Oxide Measurements // Wire Journal International. 1999. February.
  15. Smith C. S., Gnudi M. T. The Pirotechnia of Vannocio Biringucchio. New York: The American Institute of Mining and Metallurgical Engineers, 1942.
  16. Pops H. Metallurgy and Technology of Copper Electrical Conductor Wires / Metallurgy, Processing and application of Metal Wires, edited by H. Paris and D. Kim. The Minerals, Metals and Materials Society, 1996.
  17. Pops H., Baker G. Formulation, analysis and measurement of fines. Wire Association International’s 78th Annual Convention. Pittsburgh, Pennsylvania, USA. June 2008.

Из какой проволоки делают электроды

В основе сварочных электродов заложены металлические стержни, которые изготавливаются из стальной проволоки. Проволока для изготовления сварочных электродов изготавливается согласно государственным стандартам и полностью соответствует техническим условиям.

Чаще всего электродную проволоку изготавливают из легированных, низкоуглеродистых и высоколегированных сталей. Такая проволока является холоднотянутой. При изготовлении сварочных электродов применяется большое количество марок, поэтому все они отличаются между собой химическим составом.

Все предприятия, которые изготавливают электродную проволоку, производят свою продукцию на высоком уровне качества. Из электродной проволоки выпускаются сварочные электроды самых популярных марок, потому что такая проволока полностью соответствует государственным стандартам, принятым в нашей стране. Среди таких марок находятся такие сварочные электроды: УОНИ 13/55, ОК 48.00, АНО-21, ОЗС-12, ЦУ-5, МР-3С.

А теперь переходим к рассмотрению обозначений электродной проволоки. В обозначение марки электродной проволоки входит индекс Св, который обозначает, что эта проволока является сварочной. За данным индексом следуют цифры и буквы.

Первые две цифры показывают процентное содержание углерода в проволоке в сотых долях. Далее указывается тип проволоки и другие ее особенности. Для того чтобы Вы могли знать основные разновидности электродной проволоки и при необходимости их различить, была разработана таблица, приведенная ниже: «Марки электродной проволоки для стержней»

Чаще всего сварочные электроды производятся из электродной проволоки, которая изготовлена из низкоуглеродистых видов стали, например Св-08 или Св-08А. Буква «А» указывает на то, что в составе металла проволоки существует повышенная чистота металла по отношению к сере и фосфору. Если же в конце наименования сварочной проволоки указаны две буквы «А» (например Св-08АА), то это указывает на пониженное содержание серы и фосфора в составе металла сварочной проволоки. Поэтому получается, то из сварочной проволоки Св-08АА изготавливают электроды, которые имеют повышенную пластичность и вязкость металла шва, нанесенного такими электродами.

В легированных сварочных проволоках может встречаться до шести легирующих элементов. Если концентрация таких элементов слишком высока, то такую проволоку считают высоколегированной. Во всяком случае, для изготовления сварочных электродов используется только качественная сварочная проволока.


Как производят проволоку. Особенности процесса волочения

Волочение проволоки – процесс обработки металла давлением, при котором получают проволоку из алюминия, меди и стали. В качестве основного материала используют круглый или фасонный профиль. Качество готового изделия и его свойства во многом зависят от используемого материала и технологического процесса, взятого за основу. В частности, могут меняться параметры относительно прочности разрыва, жесткости, износа, трения, диаметр и характер сечения.

Особенности технологического процесса

Технология волочения проволоки представляет собой процесс, при котором заготовка проходит через специальное оборудование, которое имеет на конце сужающее отверстие. Элемент оборудования, имеющее данное отверстие, называется волоком. Оно может иметь разную конфигурацию, в результате чего можно получать проволоку разного сечения – круглого, квадратного, многогранного. Прокатка заготовки осуществляется горячим способом.

Выделяют следующие этапы волочения проволоки:

  • травление материала в серно-кислом растворе, температура которого должна быть в пределах 50̊С;
  • отжиг заготовки;
  • нейтрализация среды раствора;
  • заострение концов заготовки;
  • волочение;
  • отжиг.

Оборудование

Для волочения проволоки используют станки одно- и многократного волочения самых разных конструкций. Они могут быть:

  • с горизонтальными и вертикальными барабанами;
  • со скос групповыми и индивидуальными приводами;
  • со скольжением и без скольжения;
  • с противонатяжением.

Каждая модель станка имеет свою скорость работы и волоки (их количество не превышает 25 единиц). Последний элемент изготавливается из разных материалов:

  • из стали – для грубого волочения;
  • из твердосплавных металлов — толстое и средне волочение;
  • из алмаза – для тонкого волочения.

Современные станки отличаются высокой производительностью и позволяют получить до 60 метров проволоки в секунду.

Вспомогательные материалы

Виды и способы волочения бывают разные. Во многом они зависят от конструкции станка. По типу данный технологический процесс разделяют на два варианта – сухое и мокрое. Во втором случае используют смазочные материалы на водной основе. Смазка используется при волочении проволоки на низких скоростях, чтобы создать оптимальные условия для осуществления технологического процесса.

Удаление окалины

Удаление окалины – заключительный этап волочения проволоки. Он позволяет придать конечному продукту необходимые качества и характеристики. Осуществляется процесс тремя способами:
  • химическим – используется в редких случаях для получения высококачественного продукта;
  • механическим – самый трудоемкий, но дешевый процесс;
  • электромеханическим.

После удаления окалины проволоку промывают и отправляют в продажу.

5 способов применения проволоки

Близится дачный сезон, и мы запускаем серию статей о полезных лайфхаках в быту и на даче (англ. life hacking  «народная мудрость»). Сегодня мы расскажем о 5 способах использования проволоки из различных материалов.

Возможно Вам нужно:

1 способ: Медная проволока для профилактики фитофтороза.

Для профилактики от данного заболевания рекомендуем взять проволоку толщиной 0,8-1мм и нарежьте её на куски 3-4 см длинной.

Эффективнее проводить процедуру за 2 недели до высадки рассады в грунт, можно и позднее, но не ранее чем через 2 недели после высадки. Т.к. саженцу чтобы окрепнуть в грунте, нужно время, и лишний раз его волновать не стоит.

Итак, нарезанным куском проткните ствол насквозь чуть ниже первого листика и загните края проволоки вниз.

Рана на рассаде достаточно быстро заживёт, и растение начнёт получать через проволоку ионы меди как дополнительную защиту от болезни.

Второе решение данной задачи – просто воткнуть медную проволоку в грунт по кругу в радиусе 40-50см от стебля растения.

2 способ: Метод  «кольцевания» для ускорения плодоношения.

Подходит как для домашних, так и для огородных растений. Для данного метода нужно обмотать проволокой более тонкого диаметра (0,4-0,6мм) стебель растения. На высоте 3-5см от почвы. Это позволит питательным веществам больше поступать к плодам, чем к корням растения. И растение  начнёт давать плоды раньше, что актуально для большинства регионов РФ, где дачный период достаточно короткий.

3 способ: Для защиты плодовых деревьев.

Этот способ похож на 1 и 2 метод. Нужно вбить как можно более толстую медную проволоку в ствол плодового дерева и сверху замазать садовым варом, либо кольцевать дерево. Рана со временем затянется, а металл будет питать дерево полезными микроэлементами.  Это позволит уберечь дерево от заболеваний и укрепит иммунитет.

Способ 4: Изготовление шпалер.

Шпалера – это решётка, служащая опорой для вьющихся растений (например, виноград, некоторые виды сортовых ежевик или плющ).  Здесь подойдёт любая проволока (латунная, медная или нержавеющая), при этом медная проволока еще и будет давать питание растению. Оптимальный диаметр проволоки от 1,2 до 2 мм.

Способ 5: Бижутерия и декор интерьера из проволоки своими руками.

Проволоки могут принимать любую форму и «держать» её. А использование проволок из разного материала (латунь, медь, нержавейка) позволяет поиграть с цветом, и поэтому их так любят рукодельницы. В зависимости от цели, толщина может варьироваться от 0,4 до 1,4 см.

Помимо украшений, как для дачи, так и для городской квартиры из проволоки можно сделать огромное количество декоративных элементов: панно, картина, подставки.

Ниже мы подобрали красивые решения для вдохновения вас на творчество. Оставляйте ваши комментарии под статьёй, и мы подготовим видео-мастер-класс по понравившемуся вам изделию!

95 фото, советы и простые инструкции для всех

Проволока – это тот вид материала, который при создании различных поделок используется чаще всего.

При этом нельзя не заметить, что достаточно интересные поделки из бисера и проволоки цветы.

Например, могут сделать без особых трудностей даже учащиеся средней школы.

И это все благодаря гибкости материала.

У проволоки есть огромное количество различных видов.

Именно разновидность проволоки оказывает существенное влияние на то, какую именно вещь вы хотите сделать.

Именно поэтому сегодня ниже более подробно рассмотрим различные идеи создания интересных поделок из проволоки.

Они хорошо подойдут и для тех, кто только начинает свое знакомство с данным материалом и для уже профессионалов своего дела.

Содержимое обзора:

Поделки, выполненные из синельной проволоки

Одним из самых популярных вариантов для создания интересных поделок принято считать синельную проволоку.

Ее преимущество заключается в том, что она отлично гнется, никогда не сломается и благодаря этому ей можно придать совершенно любую желаемую форму.

Бывает, что во время поделки возникает необходимость отрезать, например, кусок от приготовленной синельной проволоки и для этого в данном случае понадобятся только простые канцелярские ножницы.

Если вы посетите мастер-класс поделки из проволоки любой, то на нем вам, наверняка, также расскажут про еще одно важное качество такой проволоки.

Из нее получаются достаточно интересные поделки, которые выглядят очень оригинально.

Например, для школьников идеальным вариантом будет создание из проволоки различных зверушек.

Процесс создания фигуры

  • Отрежьте аккуратно от куска проволоки маленький отрезок, из которого можно будет сделать петлю
  • Посмотрите различные фотографии, и постарайтесь сделать аналогично с одной из сторон проволоки маленький клубочек
  • Часть у вас в руках оставшейся проволоки необходимо намотать аккуратно на ручку или же любой фломастер или даже оказавшийся под рукой карандаш
  • Снимите получившуюся поделку и сделайте у нее маленький хвостик
  • Аналогичным образом сформируйте последовательно еще несколько кусочков от вашей проволоки
  • Благодаря этим частям можно будет сделать лапки для своей фигурки, если это будет, например, какая-либо зверушка. Важно при этом сделать их таким образом, чтобы поделка могла достаточно устойчиво в дальнейшем на них стоять.
  • Остается лишь завершить создание игрушки, приделав небольшие глаза, нос и ротик.

Работа различной проволокой

В первую очередь необходимо, чтобы ребенок освоил тонкую проволоку, поскольку она наиболее удобна для создания различных поделок.

Однако если ребенок все чаще интересуется как сделать поделки из проволоки более сложные – это значит, что пришло время переходить к более стойким и упругим к различной деформации материалам.

Обратите внимание!

Например, можно попробовать сделать интересную поделку при помощи любого вида проволоки с большим диаметром, состоящей из нескольких покрытий.

Стоит иметь в виду, что различные поделки из упругой проволоки обычно не интересны малышам.

Для них это слишком сложно на практике, поэтому к ним стоит переходить только примерно в лет семь, не раньше.

Для работы с данным материалом не обойтись без специальных загнутых плоскогубцев.

Если в будущем вы бы хотели, чтобы изделие стояло на какой-либо опоре, то обязательно нужно купить дополнительно еще набор со специальными штырьками.

После того, как ваш ребенок освоит создание даже сложных фигур из данного вида проволоки, можно начинать применять самые различные приспособления для создания интересных украшений и узоров, которые смогут украсить поделку.

Обратите внимание!

Можно ли делать интересные поделки из медной проволоки

Для того, чтобы с ребенком сделать красивую поделку, достаточно часто применяется проволока из меди.

Как правило, поделки из проволоки своими руками в таком случае предусматривают, что прежде всего, создается обязательно каркас.

В дальнейшем, если посмотреть фото поделок из проволоки, то можно заметить, что именно на него будет насаживаться различный материал, вроде бисера, простых бусин и различных элементов декора.

Фото поделок из проволоки

Обратите внимание!

 

Формирование бонсай с помощью проволоки

Формирование бонсай с помощью проволоки

Применение проволоки является важнейшим методом формирования бонсай. Обмотав ветки дерева проволокой, можно согнуть их и придать им нужную форму и положение. Пройдет несколько месяцев, прежде чем ветви «запомнят» новую форму; после этого проволоку можно снять.

 

 

Время наложение проволоки

Большинство видов деревьев можно обматывать проволокой круглый год. Во время сезона роста ветви утолщаются довольно быстро, и, в результате, проволока может врезаться в кору, оставляя на ней уродливые шрамы. Регулярно проверяйте ваше дерево и своевременно снимайте проволоку.

 

Выбор проволоки

Важно подобрать правильную проволоку для вашего бонсай. Как правило, используются два вида проволоки: анодированная алюминиевая и отожженная медная проволока. Начинающим рекомендуется пользоваться анодированной алюминиевой проволокой, которая легче в использовании и продается в большинстве (онлайн) магазинов бонсай. Продается проволока разного сечения: от 1 до 8 мм. Нет необходимости покупать проволоку всех имеющихся размеров; для начала достаточно приобрести проволоку сечением 1мм, 1,5мм и 2,5мм. Перед обмоткой толстых веток рекомендуется предварительно обернуть их рафией, которая защитит кору от повреждения при последующем сгибании.

 

Медная проволока

Алюминиевая проволока

 

Процесс наматывания проволоки

По возможности, старайтесь обматывать одним куском проволоки сразу две ветви одинаковой толщины, расположенные рядом друг с другом, а оставшиеся ветви – отдельными отрезками проволоки. Обмотайте сначала все ветви, требующие формирования, а потом начинайте сгибать их. При обматывании всего дерева начинайте со ствола, потом переходите к первичным веткам, а только затем — ко вторичным. Используйте проволоку сечением около 1/3 толщины обматываемой ветки. Проволока должна быть достаточно толстой, чтобы удерживать ветку в ее новом положении.

Далее мы более подробно рассмотрим оба метода наложения проволоки. В конце этой главы содержится информацию о том, как безопасно сгибать обмотанные проволокой ветви. Использование хорошего инструмента значительно облегчает этот процесс.

 

Обмотка сразу двух веток бонсай

  • Сначала выберите пару веток, которые вы хотите обмотать проволокой. Они должны быть одинаковой толщины и расположены недалеко друг от друга. Имейте в виду, что необходимо сначала закрепить проволоку, сделав, по крайней мере, один оборот вокруг ствола (предпочтительнее – два оборота), чтобы проволока не сдвинулась при последующем сгибании ветвей.
  • Теперь отрежьте кусок проволоки необходимой длины для обмотки обеих ветвей.
  • Сначала оберните проволоку вокруг ствола, а затем переходите к обматыванию первой ветви. Обмотайте ветку проволокой от ее основания до самого конца перед тем, как переходить к другой ветке. Проволока должна наматываться на ветку под углом в 45 градусов, тогда ветка сможет продолжать расти в толщину, сохраняя заданную форму.
  • Если вы намерены отгибать ветку вниз, намотайте сначала проволоку на стволе ниже этой ветки. И наоборот, проволоку нужно сначала намотать на участке ствола выше ветки, если она будет отгибаться вверх.
  • После завершения обмотки проволокой всех подходящих пар ветвей, продолжайте обматывать оставшиеся ветви, каждую — отдельным куском проволоки.

 

Обматывание проволокой одной ветки

  • Также как и в случае обматывания сразу двух веток одним куском проволоки, сначала отрежьте отрезок проволоки необходимой длины и обмотайте его вокруг ствола, по крайней мере, на два оборота под углом 45 градусов.
  • После этого переходите к обматыванию ветки.
  • Если на одну и туже часть ствола или ветку наматывается несколько кусков проволоки, старайтесь это делать аккуратно, наматывая их рядом параллельно друг другу.

 

Сгибание обмотанных проволокой ветвей

Обмотав проволокой все дерево, можно начинать изгибать ветки и изменять их положение. Удерживая основание и кончик ветки двумя руками, сгибайте ветку, уперев большие пальцы в точку сгиба. Таким образом, распределяя усилие по всей длине ветки, вы снизите риск ее расщепления. Когда ветка займет нужное положение, оставьте ее в покое, поскольку многократное сгибание в одном месте, скорее всего, приведет к ее повреждению. Старайтесь несильно сгибать прямые участки ветвей, чтобы они выглядели более естественно.

 

Последующий уход

Поставьте дерево в тень и удобряйте в обычном режиме. Внимательно осматривайте дерево в период роста и своевременно удаляйте проволоку до того, как она врежется в кору. Не пытайтесь разматывать проволоку, так как это может привести к повреждению коры. Вместо этого, лучше перекусить проволоку специальными кусачками в месте каждого ее оборота, после чего ее будет гораздо легче удалить.

проволока | Britannica

Проволока , резьба или тонкий стержень, обычно очень гибкие и круглые в поперечном сечении, сделанные из различных металлов и сплавов, включая железо, сталь, латунь, бронзу, медь, алюминий, цинк, золото, серебро и платину. Используемые процессы в основном одинаковы.

Первое известное письмо, касающееся проволоки и ее изготовления, появляется в Библии (Исход 39: 3): «И золотой лист был выкован и разрезан на нити. . . . » Круглую проволоку, вероятно, делали путем разрезания пластин на узкие полосы, которые затем забивались молотком и шлифовали.Эти провода были очень короткими, и для получения значительной длины необходимо было припаять или забить несколько кусков встык.

В течение нескольких столетий проволока протягивалась через металлические матрицы вручную на короткие отрезки. Вытягиваемый участок забивали молотком до такой степени, чтобы его можно было протолкнуть через отверстие в матрице. Машинист схватил его руками или щипцами и протянул через матрицу, причем степень уменьшения ограничивалась силой самосвала. Для увеличения его силы использовались различные средства, такие как посадка его в подвесной стул, чтобы, упираясь ногами в конструкцию, удерживающую штамп, он мог тянуть руками и толкать ногами.Проволоку большего размера приходилось изготавливать молотком или катанием, либо обоими способами.

В 19 веке потребность в большом тоннаже и большой длине стальной и медной проволоки стала острой, особенно после изобретения троса, развития телеграфа в 1840-х годах и изобретения телефона и колючей проволоки позже в век. Этим требованиям удовлетворяли бессемеровские и мартеновские сталеплавильные процессы, а также новое оборудование и методы прокатки катанки.

В настоящее время проволоку вытягивают из горячекатаного стального профиля, называемого катанкой.(Стержни из некоторых более мягких металлов могут быть сформированы путем экструзии или литья вместо прокатки.) Стержни очищают от окалины (оксидов, образующихся на поверхности) путем погружения в разбавленную серную кислоту. В зависимости от материала можно использовать другие кислоты или ванну с расплавом соли, например гидрид натрия, а также механические скейлеры. Для очистки пружинной проволоки иногда используется пескоструйная обработка металлов. После кислотной очистки металл промывают и погружают в раствор для покрытия, такой как эмульсия извести, бура или фосфат, чтобы нейтрализовать оставшуюся кислоту и действовать в качестве смазки при последующих операциях волочения проволоки.

Процесс волочения проволоки состоит из направления стержня, продевания заостренного конца через матрицу и прикрепления конца к блоку волочения, как показано на рисунке. Блок, вращаемый электродвигателем, протягивает смазанный стержень через матрицу, уменьшая его диаметр и увеличивая длину. Для проволоки меньшего диаметра обжатие не может быть выполнено за одну вытяжку, и используется многоблочная машина, состоящая из ряда одноблочных машин, собранных вместе в одно устройство.

Из чего сделаны провода? | Электрические провода

По gatewaycable 12 июня 2020 года в кабелях

Мы полагаемся на электрическую проводку и кабели в наших домах и работаем каждый день, и независимо от того, имеете ли вы дело с одним проводом или с несколькими одновременно, вы хотите, чтобы ваши цепи поддерживали стабильный ток с помощью эффективной проводки. Это определяется тем, из каких материалов они сделаны. Теперь вам может быть интересно: из чего сделаны провода? Чтобы точно соответствовать потребностям вашей электрической системы, существует ряд материалов, используемых для изготовления проводов и кабелей, которые являются высокопроводящим материалом и должным образом изолированы.Узнайте больше о том, как производятся электрические кабели и провода, и обязательно ознакомьтесь с нашим инвентарем электрических деталей в компании Gateway Cable Company!

Свяжитесь с нами Запрос цитаты

Из чего сделаны электрические провода?

Итак, из чего сделаны электрические провода? Производители производят электрические кабели и провода для различных отраслей и рынков, и некоторым из них могут потребоваться другие материалы для соответствия требованиям проекта. Некоторые материалы обладают различными преимуществами, поскольку они производятся более широко и доступны для большего числа приложений, в то время как другие могут иметь недостатки, такие как более низкие уровни сопротивления и связи или более дорогие.Взгляните на некоторые из различных материалов, из которых изготавливаются кабели и провода:

  • Железо
  • Сталь
  • Латунь
  • Бронза
  • Медь
  • Алюминий
  • Цинк
  • Золото
  • Серебро
  • Платина

Стандартные электрические кабели и провода

Когда дело доходит до проводов и кабелей, проложенных в вашем доме или на предприятии, вы хотите убедиться, что для многих основных электрических систем используются подходящие материалы, обеспечивающие бесперебойное питание и связь.Вот некоторые из наиболее распространенных электрических кабелей, которые вы можете проверить, чтобы убедиться, что они обеспечивают эффективную проводимость ваших цепей:

  • NM или кабель Romex
  • UF-кабель
  • THHN / THWN провод
  • Низковольтный провод
  • Телефон и провод данных
  • Коаксиальный кабель

Какие материалы проводов самые лучшие?

Теперь, когда вы знаете, из чего сделаны провода, вам может быть интересно, какие материалы для электрических проводов и кабелей лучше всего.Многие производители хотят производить провода, сделанные из металлов с высокой проводимостью, которые могут выдерживать сильное тепло и напряжение, а также могут поставляться в массовых количествах. Вот почему вы найдете медь самой популярной, потому что она широко доступна, чрезвычайно универсальна и обладает сильными стойкими свойствами, поэтому ее срок службы намного дольше, чем у других материалов. Золото и серебро могут быть отличными проводниками, однако они изнашиваются намного быстрее и намного дороже. Можно использовать алюминиевые провода, но известно, что они ржавеют, что может привести к перегреву цепи.Провода и кабели также имеют изоляцию из пластика, резины или термопластов для предотвращения утечки тока и любого взаимодействия с другими металлическими проводами.

Магазин электрических проводов и кабелей в Gateway Cable Company

Если вам нужны надежные электрические материалы, вы всегда можете обратиться к специалистам Gateway Cable Company. Мы с гордостью предлагаем дополнительную информацию по различным вопросам, касающимся электричества, чтобы вы могли легко получить знания, необходимые для правильного выполнения работы, и предоставляем онлайн-каталог электрооборудования в соответствии с вашими потребностями.Выберите из нашего ассортимента разъемы, адаптеры, кабели и многое другое, и если вы не видите определенную деталь в наличии, запросите предложение, и мы доставим ее к вам домой. Свяжитесь с нами сегодня, чтобы получить дополнительную информацию!

Как делается проволока? — Провод PHS

Что такое провод и когда он был обнаружен?

Проволока — это отдельный гибкий компонент или стержень из металла, используемый для выдерживания механических нагрузок или электрических и телекоммуникационных сигналов.

Первое использование проволоки относится к появлению ювелирных изделий в Египте во втором тысячелетии до нашей эры.C. Цилиндрические нити металла, которые, как предполагается, являются свидетельством наличия проволоки, были обнаружены на археологических раскопках уже 5000 лет назад.

Первый проволочный стан, открывшийся в 1568 году, находился в Великобритании. Проволока играла большую роль в Англии в средневековый период, поскольку она была необходима для изготовления шерстяных карточек, булавок и других промышленных товаров.

Зачем нужен провод?

Провода и кабели заставляют мир вращаться. Каждый аспект современного мира питается от набора проводов.Для некоторых из наших самых незаменимых удовольствий в жизни требуются провода, например:

  • Отопление / кондиционер
  • Холодильники / морозильники
  • Электричество
  • Системы горячего водоснабжения
  • Телевидение
  • Освещение / стоп-сигналы
  • Радио
  • Видеоигры
  • Интернет
  • Сотовые телефоны / компьютеры / iPad

Как делается проволока?

Как мы знаем, существует множество различных типов проводов, каждый из которых одинаково важен для работы основных электрических узлов и другого механического оборудования.Вот несколько примеров изготовления различных типов проводов:

Электропроводка

httpss: //youtu.be/o6m1Uii5v2I

  • Начните с алюминия или меди, чтобы сделать жилу для электрического провода
  • Машина нагревает материал, растягивая и превращая его в проволоку.
  • Другая машина наматывает новую проволоку на большую шпульку.
  • Провода сплавлены вместе, образуя электрический провод / кабель.
  • Новые тонкие провода необходимо изолировать, поэтому они имеют защитный пластиковый кожух.

Промышленные тросы

httpss: //youtu.be/eDVf71xd2cQ

  • Обычно используется для подъема тяжелых грузов в промышленных условиях
  • Старт с большой стальной проволокой
  • Машина наматывает вместе несколько таких проводов
  • Количество проволок в пряди зависит от работы, которую канат должен выполнять
  • Проволока помещается в стальную бобину и скручивает ее в нужную форму.Шпулька предохраняет проволоку от распутывания
  • Готовый трос в процессе формования покрывается жидкой сталью для дополнительной прочности и защиты.

Колючая проволока

httpss: //youtu.be/V9vgYfuI36Q

  • Эта смертоносная и неразрушимая проволока начинается с рулона блестящей нержавеющей стали весом 2500 фунтов.
  • Нагревается, смешивается с хромом, чтобы сделать его устойчивым к коррозии.
  • Проволока натягивается до желаемой консистенции
  • Пропускается через пресс и, как и другие проволоки, скручивается в бобину, чтобы избежать спутывания.
  • Машина вытягивает провода, врезая в них острые зазубрины.
  • Эта же машина наматывает проволоку обратно на шпульку.

Тележки для покупок тоже проволочные!

httpss: //www.youtube.com/watch? V = _cl8sRAV3DI

Кабельные материалы | Типы металлов, используемые в кабелях и проводах

Провод

Иногда мы забываем, что многие кабели не предназначены для передачи электроэнергии или сигналов, например, кабели, поддерживающие мосты, приводящие в действие элероны и буксируемые автомобили.Механические провода и кабели — это большая (но другая) отрасль.

Однако между механическими и электрическими проводами и кабелями есть сходство — по крайней мере, с точки зрения средств их изготовления.

По мере изготовления жилы проволоки протягиваются через фильеры все меньшего размера. Это верно для всех проводов. Алмазные матрицы используются из-за их чрезвычайной твердости и того факта, что они сохраняют свой точный размер в течение длительного времени. Фактически, система размеров American Wire Gauge (AWG) предлагает эту процедуру вытягивания.Например, провод размером 22 AWG, менее 20 AWG, теоретически протягивается через 22 матрицы все меньшего размера. Проволока большего размера протягивается через меньшее количество штампов; отсюда и «калибр» с меньшим числом. См. Таблица 1 .

Металлы

Медь считается стандартом для электрических проводников, уступая только серебру по проводимости, но гораздо более многочисленна и поэтому экономична.

Поскольку пайка меди может быть затруднена без использования флюса (который может оставлять коррозионные остатки), ее обычно покрывают лужением или гальваническим покрытием, если она предназначена для пайки.(Это не исключает использования флюса, но покрытие облегчает пайку и обеспечивает некоторую защиту от коррозии в целом.)

Медь без покрытия идеально подходит для концевых муфт под давлением (опрессовка и т. Д.), Которые предотвращают окисление поверхности.

Меньший вес алюминия

позволяет предположить, что он предпочтителен для авиастроительной промышленности, ориентированной на вес. Его вес составляет примерно 1/3 веса меди, и даже с его более низкой проводимостью он работает лучше, чем медь на фунт веса почти в 2: 1.

Так почему же алюминий не предпочтителен? Начнем с того, что физические характеристики проволоки — это только часть истории. Много лет назад, когда медь была в дефиците, для жилой проводки часто выбирали алюминий. В то время не было полностью оценено серьезное влияние гальванической реакции между алюминием и латунными или медными фитингами или клеммами в присутствии влаги. Это приведет к коррозии, которая вызовет отказ в соединении либо в виде разрыва цепи, либо, что еще хуже, высокого сопротивления, что приведет к многочисленным пожарам.Алюминий оказался гальванически слишком агрессивным для прямого контакта с медью или латунью. [ Таблица 2 перечисляет выбор металлов в соответствии с их гальваническим рангом.]

Та же проблема существует и в других схемах. Если бы все выводы были заменены на алюминиевые, гальваническую проблему можно было бы решить, но это применимо ко всем штырям, клеммам, контактам и проводящему оборудованию, и есть много существующих систем, которые потребуют адаптации.Кроме того, алюминий образует твердый оксидный слой на своей поверхности, который необходимо пронизать для хорошего электрического соединения.

Хотя это второе лучшее решение, существуют биметаллические («AL / CU») адаптеры, соединяющие алюминиевые и медные проводники, где повторная разводка в доме нецелесообразна. Это решает проблему гальванического воздействия, которая ставит под угрозу пожарную безопасность.

Еще один серьезный недостаток алюминия заключается в том, что его нельзя легко припаять или покрыть металлом для улучшения паяемости.

Все это может свидетельствовать о недопустимости законного использования алюминия в электрических системах, не говоря уже о самолетах. Не так. По правде говоря, алюминий одобрен для использования в воздухе с калибрами 6 AWG или больше. Это нацелено на энергетические приложения, а не на системы авионики. При больших токах, характерных для таких больших проводов, эффекты возможной коррозии в некоторой степени компенсируются самим током.

Серебро проводит лучше, чем медь, хотя и значительно дороже.В результате его часто используют в качестве покрытия для меди, чтобы улучшить проводимость кожи и обеспечить некоторую защиту от коррозии. Это особенно важно на очень высоких частотах, где ток более склонен концентрироваться на «коже» проводника — явление, называемое скин-эффектом. Серебро также легко паяется.

Олово обеспечивает защиту от коррозии медного проводника, но не оказывает заметного влияния на его проводимость. Это, конечно, в высшей степени припаяно.На самом деле «луженый» проводник может быть покрыт сплавом свинца и олова — припоем.

Золото , хоть и дорого, но является обычным покрытием для латунных контактов разъема, коаксиальных контактов ARINC и частей некоторых других разъемов. По сути, это покрытие является предпочтительным из-за его превосходных свойств коррозионной стойкости в приложениях, где может быть большое воздействие. Золото также является хорошим проводником и легко паяется.

В таблице 3 перечислены основные проводящие материалы и их свойства, как абсолютные, так и относительно меди.

Оболочка и диэлектрические материалы

Температурные характеристики изоляции

ПВХ

— плохой выбор для изоляции проводов и кабелей в самолетах — позиция, подтвержденная FAA. Другие хорошие и одобренные варианты существуют и легко доступны.

Температурные характеристики отражают диапазон, в котором будет сохраняться целостность изоляции — достаточно гибкой в ​​холодном состоянии и без эффектов размягчения или разрушения на верхнем конце шкалы.Следует отметить, что при определении максимальной температуры следует учитывать нагрев, вызванный рассеиванием мощности в самом проводе.

Хотя ожидается, что большая часть бортовой электропроводки не выдержит воздействия номинальных экстремальных температур, такие номинальные характеристики обеспечивают меру «запаса прочности» для обеспечения безопасности в случае пожара или неисправности.

Другие свойства изоляции, вызывающие озабоченность, в зависимости от области применения, включают диэлектрическую проницаемость, которая определяет потери, взаимную емкость (между проводниками), полное сопротивление, скорость распространения и т. Д.[См. Фактор скорости ]

Наиболее распространенные изоляционные материалы для проводов и кабелей, одобренные и обычно приемлемые для самолетов, относятся к семейству Teflon® — знакомой торговой марке фторполимеров — которые включают, например, PTFE, ETFE (также известный как Tefzel®), TFE и FEP. .

Провода

MIL-W-22759 имеют изоляцию из TFE или Tefzel®. Изоляция из ТФЭ рассчитана на верхние температуры окружающей среды от + 200 ° C до + 260 ° C, в зависимости от толщины изоляции и материалов проводов.Tefzel® обычно рассчитан на + 150 ° C. Оба подходят для температуры -65 ° C, что может быть реализовано в непосредственной близости от кожи на больших высотах.

Проблемы с температурой / производительностью

Есть несколько старых «резервных» коаксиальных кабелей — например, RG58 и RG214 — и некоторые более новые кабели с низкими потерями, которые на самом деле могут вызвать серьезные проблемы с производительностью в авиационных системах. Их полезность ограничена использованием полиэтилена в качестве диэлектрического материала. В результате получается номинальная температура 85 ° C (что равно 185 ° F), что на первый взгляд может показаться вполне адекватным.

Но воздушные системы намного безопаснее обслуживаются кабелями с номинальной температурой 200 ° C. Теперь 200 ° C — это колоссальные 394 ° F — достаточно, чтобы расплавить припой! Конечно, выше человеческой терпимости. Итак, является ли излишним указывать (и платить за) кабели с номиналом 200 °? Определенно нет. И вот почему.

Многие специалисты по авионике знают — на основании опыта, если не науки, — что использование «высокотемпературных» кабелей предпочтительнее менее дорогих коаксиальных кабелей. Причина в производительности — может быть, не на начальном этапе, а со временем.

В очень многих самолетах кабели вьются через планер в местах, которые могут стать намного более горячими, чем салон. Несмотря на то, что при контакте с воздуховодами, защитными экранами двигателя и другими горячими точками или вблизи них температура не достигает даже 200 ° C, для них нередко точки соприкосновения значительно превышают 100 ° C. Именно там может случиться ущерб. Какой ущерб?

Немного предыстории: Коаксиальные кабели по определению коаксиальные, то есть цилиндр экранирования и поперечное сечение центрального проводника имеют одну и ту же ось.Пространство [диэлектрик] между ними во всем одинаковое. Идеально.

Низкотемпературные диэлектрические материалы размягчаются при относительно низких температурах, и центральный проводник неизбежно смещается от центра к экрану, в направлении силы тяжести или внутрь изгиба кабеля. В таком случае «ко-ось» уходит с оси, и концентричность, необходимая для поддержания импеданса, ухудшается. Это необратимо и является лишь частью возможного ущерба.

Другая часть находится в коробке.В случае приемника изменения импеданса могут вызвать снижение сигнала — возможно, вплоть до потери полезности.

В случае передатчика все может быть хуже. Отражение мощности [измеряемое как КСВ, или коэффициент стоячей волны] возвращается прямо на заключительный этап, выделяя тепло … а тепло является заклятым врагом всех электронных компонентов. Это приглашение к лавке на ремонт. Вы знаете кого-нибудь, кто предпочел бы оплатить ремонт, чем скромные дополнительные расходы на кабель 200 ° C?

Кабели, в которых используются диэлектрические материалы из полиэтилена (PE) с номинальной температурой 85 ° C, становятся мягкими при температурах, характерных для изолированных участков в самолетах.В некоторых кабелях с низкими потерями используется вспененный полиэтилен, который изначально является мягким. Прокладка кабеля с особым вниманием к избеганию горячих точек в целом важна, но крайне важна для таких кабелей.

Когда так много внимания уделяется целостности кабелей, разве нет смысла всегда использовать лучший выбор?

Провода и кабели

Провода, как мы определяем здесь: используется для передачи электричества или электрических сигналов.Провода бывают разных форм и сделаны из разных материалов. Они могут показаться простыми, но инженеры известно о двух важные точки:

-Электричество в длинных проводах, используемых для передачи, ведет себя совсем иначе , чем в коротких провода, используемые в конструкции устройств
-Использование проводов в цепях переменного тока вызывает всевозможные проблемы , такие как скин-эффект и эффекты близости.

1. Удельное сопротивление / импеданс
2.Скин-эффект
3. Типы конструкций проводов

4. Подробнее о материалах проводов
5. Изоляция проводов

1.) Поведение электричества в проводах: сопротивление и импеданс


Важно знать, имеете ли вы дело с постоянным или переменным током в данном проводе. Мощность переменного тока имеет очень сложную физику, которая вызывает некоторые странные эффекты. Это была одна из причин, почему Электроэнергия переменного тока была разработана в 1890-х годах, намного позже мощности постоянного тока. Инженеры любят С.П. Штейнмецу пришлось сначала разберитесь с математикой и физикой.

Питание переменного тока:
В переменном токе ток любит путешествовать рядом поверхность проволоки (скин-эффект). Мощность переменного тока в проводе также вызывает вокруг него формируется магнитное поле (индуктивность). Это поле влияет на другие соседние провода (например, в обмотке), вызывающие эффект близости. Со всеми этими свойствами необходимо иметь дело при проектировании цепи переменного тока.

Питание постоянного тока:
В питании постоянного тока ток проходит по всей длине провода.

Размер проводника и материал (питание переменного и постоянного тока):

Электричество легче передается в местах с высокой проводимостью. элементы, такие как медь, серебро или золото, менее проводящие Чем больше диаметр материала, тем больше должен быть диаметр, чтобы выдерживать такую ​​же токовую нагрузку.

Инженеры выбирают правильно диаметр проволоки для работы, повышение тока в проволоке увеличивает удельное сопротивление и выделяет больше тепла. Как вы увидите на схеме ниже, медь может выдерживать больший ток, чем алюминий, при той же нагрузке.

Внизу: Когда сэр Хамфри Дэви пропустил большой ток через тонкий платиновый провод в 1802 году, когда он светился. и сделал первую лампу накаливания! но всего через несколько секунд проволока расплавилась и испарилась из-за тепло, вызванное сопротивлением в проводе.


Качество материала: примеси и кристаллы:

Большинство материалов содержат примеси. В меди содержание кислорода и других материалов в меди влияет на проводимость, поэтому медь, из которой будет сделан электрический провод, легируется по-другому. чем медь, которая скоро станет водопроводом.

Металлы кристаллические (как вы увидите в нашем видео о меди). Монокристаллическая медь или алюминий лучше проводимость, чем у поликристаллических металлов, однако крупнокристаллическая медь очень дорого обходится производят и используются только в высокопроизводительных приложениях.

Удельное сопротивление:

Сопротивление в проводе описывает возбуждение электронов в проводе. материал проводника. Это возбуждение приводит к выделению тепла и потере эффективности. На раннем этапе создания постоянного тока Томас Эдисон не мог послать свою энергию на большие расстояния без использования медные провода большого диаметра за счет сопротивления на расстоянии. Это сделало мощность постоянного тока не рентабельно и допускает рост мощности переменного тока.

Измерительные инструменты:
Инженеры используют закон Ома чтобы рассчитать, какое сопротивление будет иметь данный провод. Это говорит нам, сколько энергии мы потеряет на расстоянии.

I = V / R Амперы = Вольт, деленные на сопротивление

Формулы сопротивления и проводимости:

Сопротивление = удельное сопротивление / площадь поперечного сечения
Проводимость = 1 / Сопротивление

Когда сопротивление хорошее:
Создание Тепло в проволоке обычно свидетельствует о потраченной впустую энергии, однако в вольфрамовом или танталовой проволоки, тепло заставляет проволоку светиться и производить свет, который может быть желательным.Вольфрам используется для изготовления нитей потому что он имеет очень высокую температуру плавления. Проволока может сильно нагреться и ярко светятся, не таять. Вольфрам очень плохо подходит для передачи энергии поскольку большая часть прошедшей энергии теряется в виде тепла и света.

По мощности передачи мы ищем как можно более низкое удельное сопротивление, мы хотим для передачи энергии на большие расстояния без потери энергии из-за тепла. Мы измеряем сопротивление в проводе в Ом на 1000 футов или метров. Чем дольше электричество должно пройти, тем больше энергии оно теряет.

Сверхпроводящий провод и сопротивление:

Вверху: сверхпроводящий проволоку можно превратить в металлическую «ленту»


Вверху: Карл Роснер, Марк Бенц и другие. использовали специальные катушки сверхпроводящего провода для производства всего мира первый магнит на 10 тесла.Вместо меди используются ниобий и олово. поскольку материалы работают по-разному при разных температурах.

Одно из отличных решений для передачи энергии — это сверхпроводники. Когда металл становится очень холодным (приближаясь к абсолютному нулю), он приобретает проводимость бесконечности. В какой-то момент сопротивления вообще нет. Были экспериментальные сверхпроводящие линии высокого напряжения, которые смогли передавать мощность практически без потерь, однако технология недостаточно развит, чтобы быть рентабельным.

Магнитные поля (индуктивность и импеданс):

Каждый провод, используемый для передачи энергии переменного тока, создает магнитное поле, по которому течет ток. В магнитное поле визуализируется концентрическими кольцами вокруг поперечного сечения провода, каждое кольцо ближе к проводу имеет более прочный магнитная сила. Магнитные поля полезны для создания очень сильных магнитов (когда они находятся в катушке) i.е. изготовление двигателей и генераторы, однако эти магнитные поля нежелательны в линиях электропередачи.

В то время как сопротивление провода может препятствовать прохождению тока и выделять тепло, индуктивность провод / линия передачи также могут препятствовать прохождению тока, но это сопротивление не выделяет тепла, так как энергия «теряется» при создании магнитного поля, а не чем возбуждение электронов в материале. Этот импеданс называется реактивным сопротивлением переменного тока. Схемы.Мы использовали слово «потерянный», однако сила на самом деле не потеряна, она используется для создания магнитного поля. поле и возвращается, когда магнитное поле схлопывается.

2.) Кожный эффект:


В сети переменного тока электроны любят течь по вне провода. Это потому, что изменение тока вперед и назад вызывает вихревые токи, которые приводят к вытеснению тока к поверхности.

Глубина кожи

Глубина скин-слоя — это фиксированное число для данной частоты, удельного сопротивления и диэлектрической проницаемости.Чем выше частота переменного тока в системе, тем сильнее сжимается ток. на внешней стороне провода, поэтому провод, который используется с частотой 60 Гц при заданном напряжении, будет не будет нормально на 200 МГц. Инженеры всегда должны При проектировании цепей учитывайте скин-эффект. Увидеть сайт Википедии для формула, используемая для расчета глубины скин-слоя.

Вверху: инженеры преодолевают скин-эффект с помощью изолированного многожильного провода. Если вы сделаете отдельные пряди равными одной толщине скин-слоя, большая часть тока будет протекать по всей поперечное сечение, и вы используете всю медь. Обратной стороной является то, что ваш провод должен иметь больший размер. диаметр, так как вам нужно все дополнительное пространство для утепления. По мере того, как проволочные пряди становятся меньше в диаметре, а изоляция остается той же толщины, соотношение площади меди к изоляции может стать меньше единицы, тогда у вас будет больше изоляции, чем медь в обмотке или кабеле.

Ниже: более высокая частота переменного тока = меньшая глубина скин-слоя. «Более быстрый» ток чередуется вперед и назад тем больше вихревых токов он создает. Эта высокая частота блок питания работает в диапазоне МГц, обратите внимание на специальный провод, используемый на право. Провод кажется многожильным и оголенным, но это не так, он имеет прозрачное эмалевое покрытие, изолирующее его, поэтому каждая небольшая жилка несет свою часть тока, при этом ток идет снаружи каждой пряди.Это дает большую площадь поверхности в целом и позволяет большое количество тока для прохождения.


Вверху: Компактный люминесцентный легкая электроника, трансформатор очень маленький и спроектирован очень дешево. Эти детали часто выходят из строя до окончания типичного жизненный цикл агрегата »

Инженеры и затраты Сберегательный дизайн:

Инженеры используют математику для расчета «глубины скин-слоя», чтобы узнать, сколько проволоки используется для проведения электричества.Это важная часть инженеров-электриков работают над проектированием энергосистем. Этот работа также связана с экономией средств, как могут понять инженеры какой калибр и какой тип провода использовать и сравнить с другие материалы и конфигурации. Старый электрический двигатели и генераторы из начало 20 века длилось долго, потому что в то время инженеры могли спроектировать обмотки и тип провода для лучшей производительности, так как затраты на оборудование и машины были выше.Сегодня многие двигатели перегорают, потому что инженеры вынуждены использовать самый дешевый вариант — наименьшее количество материала который может выдерживать ток, однако, когда двигатель начинает при перегреве более тонкие провода из более дешевого материала быстрее сгорают. Балласты (трансформаторы) в современных системах освещения имеют общеизвестный характер. короткий срок службы в целях снижения стоимости единицы продукции.

Практическое упражнение: Как затраты влияют на дизайн

Вы можете увидеть и почувствуйте работу инженеров в конструкции провода вокруг вашего дома.Просто найдите старые блоки питания или профессиональные блоки питания используется с дорогостоящими машинами или инструментами. Почувствуйте вес этих мельницы или блоки питания. Теперь найдите детскую игрушку или мобильный телефон зарядное устройство. Почувствуйте, насколько легкими кажутся трансформаторы по сравнению с ними.
Если вам повезет, вы можете найти два трансформатора, преобразующие мощность. от стены (120 или 220 В) на такое же напряжение постоянного тока для устройства. Если открыть корпус, можно увидеть разницу в размерах. толщины обмоток, а также от того, используют ли они медь или алюминий.Вы наглядно увидите, как влияет на стоимость дизайн всего предмета.


3.) Типы проводов:


Ниже: типов провода, используемого коммунальными предприятиями при передаче электроэнергии:

Ниже: фиксированная проводка, используемая в домах, а также шнуры, используемые в динамиках, бытовая техника и телефонные системы.На рисунке ниже показаны старые провода, которые когда-то использовались в домах (кабель SJTWA и тип SE), и современные стандартный ромекс.

ЭЛЕКТРОПРОВОДКА 1880-х годов до наших дней:

Вверху: 3 проводника подземный медный провод (сейчас редко)

Внизу: плоская лента провод, используемый в сверхпроводящих магнитах

Лучший провод для работа:

Все инженеры-электрики должны знать о проводах и думать об использовании правильного дизайна и материал для поставленной задачи.Вот факторы для определения конструкция проволоки:

-Прочность (способность многократно сгибаться или сдавливаться веса)
-Уровень напряжения и тока
-Прочность подвески (способность долго удерживать собственный вес пролеты между опорами)
-Подземный или подводный
-Температура эксплуатации (например, сверхпроводящий проволока)
-Стоимость

Сплошная проволока:

Преимущества:
Меньшая площадь поверхности, подверженной коррозии
Может быть жесткой и прочной
Недостатки:
Не годится при многократном сгибании, может сломаться при сгибании пятно
Непрактично для высокого напряжения

Многожильный провод:

Вверху: многожильный динамик провод, который есть в каждом доме
Ниже: Для специального использования сверхтолстый многожильный медный провод

-Скрученный провод — много меньших проводов параллельно, можно скручивать вместе
Преимущества:
Отличный проводник для своего размера
Недостатки:
Вы можете подумать, что это будет хорошо для высокочастотного использования, потому что у него есть большая площадь поверхности на всех маленьких жилках проволоки, однако это хуже, чем сплошная проволока, потому что пряди соприкасаются друг друга, закорачивая, и поэтому провод действует как один больший проволока, и в ней много воздушных пространств, что обеспечивает большее сопротивление для размера

Плетеный провод:

Преимущества:
-Большая долговечность по сравнению с сплошным проводом
-Лучшая проводимость, чем сплошной провод (большая площадь поверхности)
-Может действовать как электромагнитный экран в шумоподавляющих проводах
-Чем больше жил в проволоке, тем она гибче и прочнее. есть, но он стоит дороже

Спец. провода:

Сплошной с оплеткой снаружи или в некоторой их комбинации, эти провода используются для всех видов специальных применений.

Коаксиальный кабель используется для передачи радио или кабельного телевидения. потому что по своей конструкции проводники с оплеткой и фольгой снаружи держать частоты в ловушке внутри. Экранирование предотвращает паразитная электромагнитная энергия от заражения области вокруг чувствительной приемники.

Ниже: Видео о типах проводов, используемых в электроэнергетике:

Практическое упражнение: Проволока Угадайка

Соберите куски металлолома провод вокруг вашего дома или школьной мастерской, соберите короткие образцы разных типов.Теперь используйте приведенные выше диаграммы, чтобы выяснить, что тип проволоки, из чего она сделана, и перечислите ее применение каждый. Покажите это своему учителю и посмотрите, правильно ли вы угадали. Существует столько экзотических видов проволоки, что вы можете оказаться с настоящей загадкой в ​​твоих руках. Используйте поиск в Интернете, чтобы попробовать чтобы идентифицировать все ваши образцы.


4.) Проволочные материалы:

Наиболее распространенный материал для электрического провода — медь и алюминий , это не самые лучшие проводники, однако они многочисленны и дешевы. Золото также используется в различных областях, поскольку оно устойчиво к коррозии. Золото используется в электронике автомобильных подушек безопасности, чтобы гарантировать, что устройство будет функционировать много лет спустя, несмотря на воздействие вредных элементов.

Вверху: золото, использованное в разъемы для микросхем Motorola

Золото обычно используется в контакте области, потому что эта точка в системе более подвержена коррозии и имеет больший потенциал к окислению.

Алюминий обернутый вокруг стального центрального провода используется в передаче энергии, потому что Алюминий дешевле меди и не подвержен коррозии. Стальной центр используется просто для силы, чтобы удерживать провод на длинных участках. Выше типичный кабель ACSR, используемый в воздушных линиях электропередач по всему миру.

Хорошие проводники, твердое вещество при комнатной температуре:

Платина, серебро, золото, медь, алюминий

4.) ПРОВОДНАЯ ИЗОЛЯЦИЯ:

Слева: Для эффективного обмотки двигателя или генератора должны быть плотно упакованы вместе, минимизация воздушных пространств. Провода, используемые в двигателях и генераторах, обычно покрыты эмалью, чтобы обмотки плотно прилегали друг к другу. Традиционная резиновая или полимерная изоляция сделает провод диаметром толще, это одна из причин, почему старые электродвигатели были больше и тяжелее современных моторов такой же мощности.

Смотрите, как провод двигателя упакован и намотан в современный асинхронные двигатели в нашем видео здесь.

Узнать больше о все поле электроизоляция на нашей странице здесь.


Практическое упражнение: Сжечь мотор!

Вы заметили что когда моторчик игрушки сильно нагревается, он пахнет? Это испарение изоляции.Тепло разрушает все виды изоляции в конечном итоге, и в обмотке двигателя, когда изоляция становится слабой. Достаточно двух проводов, расположенных рядом, будет коротко, это приведет к возникновению дуги. и устройство сгорает.

Если взять маленький двигатель, о котором вы не заботитесь, вы можете намеренно сжечь его посмотреть, что происходит с обмотками. Вы можете сделать это, поставив напряжение, превышающее рекомендованное, через устройство или при работе мотор горячий в течение длительного периода времени.Проконсультируйтесь с электриком или инженер, чтобы безопасно выполнить это упражнение.


Статья, фото и видео М. Велана и В. Корнрумпфа

Источники:
Государственный университет Джорджии
Википедия
Волшебники Скенектади Карл Роснер. Технический центр Эдисона. 2008
Интервью с Руди Деном. Технический центр Эдисона. 2012
Видео с Денверским электродвигателем. Технический центр Эдисона. 2012
Видео с Энергетической ассоциацией Сан-Мигеля.Технический центр Эдисона. 2014 г.
Уильям Корнрумпф, инженер-электрик

Почему провода? | Давайте поговорим о науке

Почему провода?

Подумайте обо всех проводах, которые вы используете каждый день. Провода — большая часть нашей жизни, даже если мы не всегда это осознаем. Электропроводка, гитарные струны и скрепки — вот лишь несколько примеров проводов. Даже Интернет состоит из множества компьютеров, соединенных проводами. Провода настолько регулярно присутствуют в нашей жизни, что мы не всегда о них думаем.

Кабели Ethernet в большом центре обработки данных (Источник: Ultima_Gaina через iStockphoto).

Из чего сделаны провода?

Провода металлические. Некоторые из используемых металлов включают сталь, медь, алюминий и серебро. Мы используем эти материалы для изготовления проволоки из-за их свойств. Металлы имеют высокую температуру плавления и обычно являются твердыми при комнатной температуре. Еще они пластичны. Это означает, что их можно легко растянуть. Наконец, металлы являются хорошими проводниками тепла и электричества.Это означает, что электричество и тепло могут легко проходить через них.

Знаете ли вы?

Серебро — это элемент, который лучше всего проводит электричество.

Как сделаны провода?

Волочение проволоки — это процесс, который часто используется для изготовления проволоки. Волочение проволоки включает уменьшение диаметра металлических стержней до желаемого диаметра . Диаметр — другое слово, обозначающее ширину круга или цилиндра. Проволока Калибр — это измерение диаметра проволоки.В процессе волочения проволоки можно производить проволоку самых разных размеров. Посмотрим, как это работает.

Сначала кусок стали, называемый заготовкой, нагревается примерно до 2000 ° C. Это облегчает изменение его формы. Горячая заготовка проходит через ряд прокатных клетей, которые превращают металл в пруток диаметром 1-4 см. Затем стержень формируется в катушки.

Стан горячей прокатки в компании Charter Steel, Солвилл, Висконсин (Источник: Charter Steel)

Катушки оставляют охлаждаться на открытом воздухе.Каждая катушка весит около 700-900 кг! Катушки могут покрыться ржавчиной и испачкаться во время хранения. Его необходимо очистить перед следующим шагом. Очистка заключается в погружении змеевика в раствор горячей воды с химическими веществами, удаляющими загрязнения с поверхности.

Род Ярд в корпорации Henkel в Мэдисон-Хайтс, штат Мичиган (Источник: Henkel Corporation / Дэвид Гзеш)

Затем стержень пропускается через серию смазываемых матриц . Смазка — это материал, который делает что-то скользким.Масло часто используется как смазка. Матрица — это инструмент, который используется для прессования, резки или формования материала. Здесь матрицы уменьшают большой диаметр стержня до проволоки меньшего диаметра. Проволока выдерживает силу этого процесса, потому что она очень пластичная. Менее пластичный материал, например стекло, разобьется.

Карбидные штампы от Paramount Die Company в Белкампе, Мэриленд (Источник: Paramount Die Company)

Dimco Indio умирает от Die India Manufacturing Co.в Баване, Дели, Индия (Источник: Die India Manufacturing Co.)

Со временем образуются тонкие проволоки. Смазочные материалы, например, производимые Blachford Chemical Group *, уменьшают трение и создают барьер при прохождении проволоки через матрицу. Смазочные материалы ускоряют процесс и продлевают срок службы штампов.

* Относится к Blachford Corporation и H.L. Blachford Ltd.

Схема пресс-формы для сухой смазки (Источник: Henkel Corporation / Давид Гзеш)

Смазка для волочения стальной проволоки представляет собой порошок.Коробка фильеры заполняется порошком, и проволока протягивается сначала через порошок, а затем через фильеру. Матрица имеет конус спереди. Его уменьшающийся диаметр приводит к нанесению слоя смазки на проволоку. На готовой проволоке останется легкая смазочная пленка, и может потребоваться очистка перед дальнейшей переработкой в ​​конечный продукт.


В результате этого процесса может образовываться пыль. Эта пыль может быть взрывоопасной пылью . Вот почему так важно контролировать пыль при волочении проволоки.

Слева: Емкость для сухой смазки. Справа: смазка для волочения проволоки (Источник: Blachford Corporation / Дэвид Гзеш) Как делают электрические провода (2018 г., 4:45 мин.)

Знаете ли вы?

Ученые Стэнфордского университета создали самый тонкий в мире электрический провод. Его ширина всего три атома.

Как использовать провода?

Люди используют провода для создания многих других продуктов. Например, гайки и болты изготовлены из стальной проволоки.Проволока, натянутая до определенного диаметра, затем прижимается к форме болта или винта. Нижняя часть имеет резьбу для создания спирали. Гвозди также делают из отрезков проволоки, которые с одного конца приплюснуты, а с другого — заострены.

Ассортимент гаек и болтов (Источник: Адам Смигельски через iStockphoto).

Тянутая проволока также используется для изготовления обычных предметов, таких как скобы для степлеров для бумаги. В этом случае очень тонкая проволока пропускается через квадратную матрицу, а не через круглую, чтобы придать окончательную форму.Затем его разрезают, сгибают и в некоторых случаях затачивают до готового изделия. Скрепки также сделаны из проволоки, имеющей классическую форму.

Некоторые гитарные струны сделаны из кусков стальной проволоки . Проволоки тянутся к разному диаметру и прочности. Банджо и пианино также используют проволоку. Другими примерами стальных изделий, изготовленных из проволоки, являются стеллажи, ограждения, сварочная проволока и иглы для шприцев.

Крупным планом струны электрогитары. Диаметр струн уменьшается слева направо (Источник: georgeclerk через iStockphoto).

Знаете ли вы?

Прослушивание телефонных разговоров, или подслушивание частных разговоров, используется с 1890-х годов. Прослушивание телефонных разговоров получило свое название от людей, подключающих подслушивающие устройства к проводам, по которым передается звук.

Некоторые провода переносят электричество. Эти провода часто делают из меди или алюминия. Провода разного диаметра переносят электричество разного типа и количества. Калибр провода определяет, сколько электрического тока он может пропускать. Кабели представляют собой группы проводов, связанных вместе.Провода, по которым проходит электричество, завернуты в изолятор, например пластик. Изоляция предохраняет людей от поражения электрическим током. Это также гарантирует, что электричество поступает в нужное место.

Линии электропередач высокого напряжения состоят из проводов (Источник: RuudMorijn через iStockphoto).

Из проволоки делают украшения, например, серьги. Серебряная и золотая проволока формируются с использованием процесса, аналогичного описанному выше. Однако их часто рисуют вручную и создают в меньшем масштабе.

Это лишь некоторые из множества способов использования проводов. В следующий раз, когда вы подключите компьютер или воспользуетесь скрепкой, подумайте обо всех этапах ее создания.

Let’s Talk Science высоко ценит работу и вклад компании H.L Blachford Ltd. в разработку этого справочного материала.

О компании H.L Blachford Ltd.

H.L Blachford Ltd была основана в Монреале в 1921 году Генри Ллойдом Блахфордом и расширила свою деятельность, включив производственные предприятия в США, Канаде и Великобритании.Blachford производит продукты на основе стеарата для различных отраслей промышленности, включая резину, шины, порошковый металл, пластмассы, ПВХ, продукты питания, волочение проволоки и металлообработку. Blachford также является ведущим производителем оборудования для контроля шума и вибрации, тяжелых резиновых ковриков и обшивки потолка для транспортного и сельскохозяйственного оборудования.

Типы проводов — Руководство по покупке Thomas

Термины провод и кабель часто используются как синонимы, но на самом деле они имеют два разных значения.Проволока — это одна гибкая металлическая нить. Кабель — это два или более провода или других проводников, сгруппированных с оболочкой или оболочкой вокруг них. В промышленности провод используется для поддержки нагрузок или передачи электроэнергии и телекоммуникационных сигналов. Несколько скрученных вместе прядей проволоки называют тросом. Трос обычно используется для подъема и подъема грузов. В этой статье рассматриваются различные типы проводов, используемых в электропроводке, включая жгуты проводов и телекоммуникации.

Твердый

Сплошной провод, также известный как одножильный или одножильный провод, состоит из одного куска металлического провода, обычно окруженного защитной оболочкой.Его часто используют для разводки макетных плат. Его изготовление дешевле многожильного. Сплошная проволока менее подвержена коррозии, поскольку ее поверхность меньше подвержена воздействию окружающей среды. Он используется, когда требуется менее гибкий провод, например, в инфраструктуре зданий, органах управления транспортными средствами и на открытом воздухе.

Провод предохранителя

Плавкий провод имеет низкое сопротивление, чтобы позволить нормальному току безопасно проходить через него, но если есть короткое замыкание, которое вызывает прохождение через него тока более высокого напряжения, плавкий провод не выдерживает тепла, поэтому он плавится и ломается. схема.Этот разрыв защищает другие электрические устройства от тока короткого замыкания. Проволока для плавкого предохранителя представляет собой сплошную проволоку из сплава с низкой температурой плавления.

Магнитный провод

Магнитный провод, также известный как эмалированный провод, представляет собой сплошной провод, обычно сделанный из меди, который изолирован очень тонким покрытием, а не более толстым пластиком или другой изоляцией, обычно применяемой на электрическом проводе, чтобы обеспечить очень плотное прилегание. свернутый. Эти герметичные катушки используются для таких приложений, как индукторы, трансформаторы, двигатели, электромагниты и динамики

Многожильный

Многожильный провод состоит из нескольких небольших проводов, связанных или скрученных вместе.Многожильный провод более гибкий и более устойчивый к усталости металла, чем сплошной. Он используется для соединений печатных плат в устройствах с несколькими печатными платами, поскольку жесткость сплошного провода может вызвать слишком большое напряжение во время сборки или обслуживания. Многожильный провод также используется для шнуров питания переменного тока, кабелей музыкальных инструментов, кабелей сварочных электродов и кабелей компьютерной мыши среди других приложений.

Литц проволока

Литц-провод — это многожильный провод, используемый в электронике для передачи переменного тока на радиочастотах.Он состоит из множества тонких проволочных жил, по отдельности изолированных и скрученных вместе, часто в несколько уровней. Литц-провод используется для радиопередатчиков и приемников, работающих на низких частотах, оборудования индукционного нагрева и импульсных источников питания. Название «litz» происходит от немецкого слова «Litzendraht», обозначающего плетеную / многожильную или тканую проволоку.

Мишура проволока

Проволока с мишурой — это тип электрического провода, который намного более устойчив к усталости металла, чем сплошной провод или другие виды многожильного провода.Он используется в приложениях, требующих высокой механической гибкости, но с низкой допустимой нагрузкой по току, таких как шнуры телефонов, наушников и небольшие электрические приборы. Он состоит из нескольких нитей тонкой металлической фольги, обернутых вокруг гибкого нейлонового или текстильного сердечника. Несколько проволок с мишурой обычно покрывают изоляционным слоем, чтобы сформировать один провод. Несколько проводников образуют шнур круглого профиля или плоский кабель.

Плетеный

Плетеная проволока состоит из нескольких небольших жилок, скрепленных вместе.Как и многожильные провода, плетеные провода являются лучшими проводниками, чем сплошные. Их нелегко сломать при сгибании. Плетеные провода часто используются в качестве электромагнитного экрана в кабелях для шумоподавления.

Жгут проводов

Жгуты проводов представляют собой пучки проводов или кабелей и могут иметь множество различных типов внешних связывающих материалов, например, оплетку, расширяемую оплетку, военную шнуровку, обертку для позвоночника и стяжку. Жгуты проводов упрощают установку и организацию электрических систем.

Типы проводов — сводка

В этой статье представлено понимание различных типов проводов. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Прочие изделия из проволоки

Прочие «виды» статей

Больше от Metals & Metal Products

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *