Аэродинамические трубы: АЭРОДИНАМИЧЕСКАЯ ТРУБА • Большая российская энциклопедия

Содержание

АЭРОДИНАМИЧЕСКАЯ ТРУБА • Большая российская энциклопедия

АЭРОДИНАМИ́ЧЕСКАЯ ТРУБА́, экс­пе­рим. ус­та­нов­ка для ис­сле­до­ва­ния яв­ле­ний и про­цес­сов, со­про­во­ж­даю­щих об­те­ка­ние тел по­то­ком га­за (обыч­но воз­ду­ха). Ис­сле­до­ва­ния в А. т. ос­но­ва­ны на прин­ци­пе об­ра­ти­мо­сти дви­же­ния, со­глас­но ко­то­ро­му пе­ре­ме­ще­ние те­ла в не­под­виж­ном воз­ду­хе мо­жет быть за­ме­не­но дви­же­ни­ем воз­ду­ха от­но­си­тель­но не­под­виж­но­го те­ла. Экс­пе­ри­мен­ты в А. т. про­во­дят, как пра­ви­ло, на гео­мет­ри­че­ски по­доб­ных мо­де­лях, ре­же на са­мих ори­ги­на­лах. В А. т. экс­пе­ри­мен­таль­но оп­ре­де­ля­ют дей­ст­вую­щие на те­ло аэ­ро­ди­на­мич. си­лы и мо­мен­ты, ис­сле­ду­ют рас­пре­де­ле­ние дав­ле­ний и темп-ры по его по­верх­но­сти, ви­зуа­ли­зи­ру­ют про­цесс об­те­ка­ния те­ла по­то­ком, изу­ча­ют аэ­ро­уп­ру­гость и др.

А. т. со­дер­жит ра­бо­чую часть – пря­мо­уголь­ную или ци­лин­д­рич. ка­ме­ру, где раз­ме­ща­ет­ся мо­дель ис­сле­дуе­мо­го объ­ек­та, и ком­плекс уст­ройств, по­сред­ст­вом ко­то­рых в ра­бо­чей час­ти соз­да­ёт­ся рав­но­мер­ный, од­но­род­ный по­ток с за­дан­ны­ми ско­ро­стью, плот­но­стью и темп-рой га­за. По спо­со­бу об­ра­зо­ва­ния по­то­ка А. т. под­раз­де­ля­ют на ком­прес­сор­ные не­пре­рыв­но­го дей­ст­вия и бал­лон­ные; по ком­по­нов­ке кон­ту­ра (пу­ти дви­же­ния по­то­ка) – на замк­ну­тые и ра­зомк­ну­тые. В ком­прес­сор­ных А. т. по­ток га­за соз­даёт­ся ком­прес­со­ром; они име­ют вы­со­кий кпд и удоб­ны в экс­плуа­та­ции, но для них тре­бу­ют­ся мощ­ные ком­прес­со­ры с боль­шим рас­хо­дом га­за. В бал­лонных А. т. газ под дав­ле­ни­ем ис­те­ка­ет из бал­ло­нов; та­кие А. т. про­ще ком­прес­сор­ных по кон­ст­рук­ции, но ме­нее эко­но­мич­ны из-за по­те­ри час­ти энер­гии по­то­ка при его ре­гу­ли­ро­ва­нии, кро­ме то­го, про­дол­жи­тель­ность их ра­бо­ты (от де­сят­ков се­кунд до неск. ми­нут) ог­ра­ни­че­на за­па­сом газa в бал­ло­нах. Замк­ну­тые А. т. по срав­не­нию с ра­зомк­ну­ты­ми име­ют бо­лее вы­со­кий кпд (за счёт ис­поль­зо­ва­ния зна­чит. час­ти ки­не­тич. энер­гии, ос­тав­шей­ся в га­зо­вом по­то­ке по­сле его про­хо­ж­де­ния че­рез ра­бо­чую часть тру­бы), но и боль­шие раз­ме­ры.

В за­ви­си­мо­сти от реа­ли­зуе­мо­го диа­па­зо­на Ма­ха чи­сел ($M$) раз­ли­ча­ют А. т. доз­ву­ко­вые ($M=$ 0,15–0,7), транс­зву­ко­вые ($M=$ 0,7–1,3), сверх­зву­ко­вые ($M=$ 1,3–5) и ги­пер­зву­ко­вые ($M=$ 5–25).

Рис. 1. Схема дозвуковой компрессорной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – направление потока; 6 – рабочая часть с мо...

В доз­ву­ко­вых А. т. (рис. 1) ис­сле­ду­ют аэ­ро­ди­на­мич. ха­рак­те­ри­сти­ки доз­ву­ко­вых са­мо­лё­тов, вер­то­лё­тов, а так­же ха­рак­те­ри­сти­ки сверх­зву­ко­вых са­мо­лё­тов на взлёт­но-по­са­доч­ных ре­жи­мах; с их по­мо­щью изу­ча­ют ха­рак­тер об­те­ка­ния воз­душ­ным по­то­ком ав­то­мо­би­лей и др. на­зем­ных транс­порт­ных средств, зда­ний, мос­тов, ба­шен и др. объ­ек­тов. Ра­бо­чая часть та­ких А. т. обыч­но име­ет вид ци­лин­д­ра с по­пе­реч­ным се­че­ни­ем в фор­ме кру­га, пря­мо­уголь­ни­ка или эл­лип­са. Пе­ред ра­бо­чей ча­стью на­хо­дят­ся фор­ка­ме­ра и со­пло – кон­фу­зор, обес­пе­чива­ю­щие вы­со­кую рав­но­мер­ность воз­душ­но­го по­то­ка. В на­ча­ле фор­ка­ме­ры сто­ит ре­шёт­ка из ка­либ­ро­ван­ных тру­бок для уст­ра­не­ния ско­сов по­то­ка и раз­мель­че­ния круп­ных вих­рей – хо­ней­комб. За ре­шёт­кой рас­по­ла­га­ют­ся сет­ки, вы­рав­ни­ваю­щие ско­ро­сти в по­пе­реч­ном се­че­нии по­то­ка и умень­шаю­щие тур­бу­лент­ные пуль­са­ции. Из ра­бо­чей час­ти че­рез диф­фу­зор и ко­ле­на с по­во­рот­ны­ми ло­пат­ка­ми, умень­шаю­щи­ми по­те­ри энер­гии, по­ток по­сту­па­ет в ком­прес­сор. Да­лее рас­по­ла­га­ют­ся об­рат­ный ка­нал с диф­фу­зо­ром, ко­ле­на по­во­рот­ных ло­па­ток и воз­ду­хо­ох­ла­ди­тель, под­дер­жи­ваю­щий по­сто­ян­ную темп-ру га­за в ра­бо­чей час­ти. Эл­лип­тич. се­че­ние ра­бо­чей час­ти круп­ней­шей в Рос­сии до­зву­ко­вой А. т. име­ет раз­ме­ры 12×24 м

2. Мощ­ность ком­прес­со­ров доз­ву­ко­вых А. т. – от со­тен кВт до неск. де­сят­ков МВт.

Рис. 2. Схема баллонной трансзвуковой эжекторной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – перфорированная рабочая часть с модель...

Транс­зву­ко­вая ком­прес­сор­ная А. т. по схе­ме ана­ло­гич­на доз­ву­ко­вой. Для реа­ли­за­ции не­пре­рыв­но­го пе­ре­хо­да че­рез ско­рость зву­ка в ней ис­поль­зу­ет­ся до­зву­ко­вое со­пло и ра­бо­чая часть с ще­ле­вы­ми или пер­фо­ри­ро­ван­ны­ми стен­ка­ми; под­би­рая фор­му и раз­мер пер­фо­ра­ции, мож­но пре­дот­вра­тить от­ра­же­ние от сте­нок волн сжа­тия и раз­ре­же­ния, воз­ни­каю­щих при об­те­ка­нии мо­дели. Пром. транс­зву­ко­вые А. т. име­ют по­пе­реч­ные раз­ме­ры ра­бо­чей час­ти до 3 м, мощ­ность ком­прес­со­ров дос­ти­га­ет 100 МВт и бо­лее. В бал­лон­ных транс­зву­ко­вых А. т. для соз­да­ния тре­буе­мо­го га­зо­во­го по­то­ка при­ме­ня­ют эжек­то­ры (рис. 2).

Рис. 3. Схема сверхзвуковой баллонной аэродинамической трубы: 1 – баллонсо сжатым воздухом; 2 – трубопровод; 3 – регулирующий дроссель; 4 – выравнивающие сетки; 5 – хоней...

В сверх­зву­ко­вых А. т. для по­лу­че­ния тре­буе­мых ско­ро­стей га­за ис­поль­зу­ют сверх­зву­ко­вое со­пло (т. н. со­пло Ла­ва­ля), со­стоя­щее из су­жаю­щей­ся (доз­ву­ко­вой) и рас­ши­ряю­щей­ся (сверх­зву­ко­вой) час­тей; в ми­ни­маль­ном (кри­ти­че­ском) се­че­нии со­пла ско­рость га­за рав­на ско­рости зву­ка. Чис­ло $M$, по­лу­чае­мое в ра­бо­чей час­ти, оп­ре­де­ля­ет­ся от­но­ше­ни­ем пло­ща­дей се­че­ния ра­бо­чей час­ти и кри­тич. се­че­ния со­пла. Тор­мо­же­ние сверх­зву­ко­во­го по­то­ка по­сле ра­бо­чей час­ти со­про­во­ж­да­ет­ся вол­но­вы­ми по­те­ря­ми пол­но­го дав­ле­ния, свя­зан­ны­ми с об­ра­зо­вани­ем скач­ков уп­лот­не­ния. Мощ­но­сти ком­прес­со­ров круп­ных сверх­зву­ко­вых А. т. с ха­рак­тер­ны­ми раз­ме­ра­ми по­пе­реч­но­го се­че­ния ра­бо­чей час­ти 1,5 × 2,5 м

2 со­став­ля­ют 50–100 МВт. В не­замк­ну­той пря­мо­точ­ной бал­лон­ной сверх­зву­ко­вой А. т. (рис. 3) нет об­рат­но­го ка­на­ла, за­дан­ное дав­ле­ние в фор­ка­ме­ре (по ме­ре ис­те­че­ния га­за из бал­ло­нов) под­дер­жи­ва­ет­ся с по­мо­щью ре­гу­ли­рую­ще­го дрос­се­ля.

Мо­де­ли­ро­ва­ние ги­пер­зву­ко­во­го по­лё­та тре­бу­ет вос­про­из­ве­де­ния в А. т. дав­ле­ния тор­мо­же­ния до со­тен МПа и темп-ры тор­мо­же­ния до 10К. При чис­ле МO 4,5 воз­дух в А. т. не­об­хо­ди­мо на­гре­вать для пре­дот­вра­ще­ния его кон­ден­са­ции, от­че­го су­ще­ст­вен­но из­ме­ня­ют­ся свой­ст­ва по­то­ка, вы­те­каю­ще­го из со­пла, и он ста­но­вит­ся прак­ти­че­ски не­при­год­ным для про­ве­де­ния аэ­ро­ди­на­мич. экс­пе­ри­мен­та. Обыч­но ис­сле­до­ва­ния ги­пер­зву­ко­вых ЛА про­во­дят на ком­плек­се экс­пе­рим. ус­та­но­вок, по­сколь­ку не су­ще­ст­ву­ет А. т., ко­то­рая од­на обес­пе­чи­ла бы все не­об­ходи­мые для мо­де­ли­ро­ва­ния та­ко­го по­лё­та ус­ло­вия.

Рис. 4. Схема баллонной гиперзвуковой аэродинамической трубы: 1 – баллонс высоким давлением; 2 – трубопровод; 3 – регулирующий дроссель; 4 – подогреватель; 5 – форкамерас...

Ги­пер­зву­ко­вые бал­лон­ные А. т. «клас­сич. ти­па» по­доб­ны сверх­зву­ко­вым бал­лон­ным А. т. со вре­ме­нем дей­ст­вия по­ряд­ка де­сят­ков се­кунд. В та­ких тру­бах по­дог­рев воз­ду­ха осу­ще­ст­в­ля­ет­ся в оми­че­ских, элек­тро­ду­го­вых или кау­пер­ных по­дог­ре­ва­те­лях. Мощ­ность по­дог­ре­ва­те­лей для труб с се­че­ни­ем ра­бо­чей час­ти 1 м2 cоставляет бо­лее 10 MBт. Макс. давлениe в А. т. с ду­го­вым по­до­гре­ва­телем по­ряд­ка 20 МПа, что по­зво­ля­ет мо­де­ли­ро­вать по­лёт ги­пер­зву­ко­вых ЛА толь­ко на боль­ших вы­со­тах. Боль­шой пе­ре­пад дав­ле­ний, не­об­хо­ди­мый для ги­пер­зву­ко­вых А. т., обес­пе­чи­ва­ет­ся сис­те­мой эжек­то­ров или ва­ку­ум­ной ём­ко­стью (рис. 4).

Ряд важ­ней­ших осо­бен­но­стей ги­пер­зву­ко­во­го по­лё­та мо­де­ли­ру­ет­ся в раз­лич­ных спец. га­зо­ди­на­мич. ус­та­нов­ках. Для ис­сле­до­ва­ний при боль­ших дав­ле­ни­ях тор­мо­же­ния и на­тур­ных Рей­нольд­са чис­лах ши­ро­ко при­ме­ня­ют удар­ные и им­пульс­ные А. т. со вре­ме­нем дей­ст­вия 0,005–0,1 с. Те­п­ло­за­щит­ные по­кры­тия ис­сле­ду­ют в те­п­ло­вых А. т. с элек­тро­ду­го­вы­ми по­дог­ре­ва­те­ля­ми. По­лё­ты на очень боль­ших вы­со­тах мо­де­ли­ру­ют в ва­ку­умных А. т., обес­пе­чи­ваю­щих дав­ле­ние по­ряд­ка 10–3 Па и дли­тель­ность экс­пе­ри­мен­та до 1 ча­са. Аэ­ро­аку­стич. А. т. пред­на­зна­че­ны для ис­сле­до­ва­ния влия­ния аку­стич. по­лей на проч­ность кон­ст­рук­ции изу­чае­мо­го объ­ек­та, ра­бо­ту при­бор­ных от­се­ков и др. От обыч­ных А. т. они от­ли­ча­ют­ся тем, что их ра­бо­чая часть за­щи­ще­на от внеш­них шу­мов (ра­бо­таю­щих си­ло­вых ус­та­но­вок и вен­ти­ля­то­ров А. т.), а её стен­ки по­кры­ты ма­те­риа­лом, по­гло­щаю­щим зву­ко­вые вол­ны, воз­ни­каю­щие при об­те­ка­нии мо­де­ли и ра­бо­те ус­та­нов­лен­ных на ней дви­га­те­лей.

Управ­ле­ние А. т. и об­ра­бот­ка дан­ных, по­лу­чае­мых в хо­де экс­пе­ри­мен­тов с на­тур­ны­ми объ­ек­та­ми или их мо­де­ля­ми, осу­ще­ст­в­ля­ет­ся с по­мо­щью ЭВМ.

По­яв­ле­ние и раз­ви­тие А. т. тес­но свя­за­но с раз­ви­ти­ем авиа­ции. Пер­вые А. т. по­строе­ны в 1871 В. А. Паш­ке­ви­чем в Рос­сии и Ф. Уэн­хе­мом в Ве­ли­ко­бри­та­нии, не­сколь­ко позд­нее К. Э. Ци­ол­ков­ским (1897), брать­я­ми У. и О. Райт (1901), Н. Е. Жу­ков­ским (1902) и др. В 1920–30-х гг. раз­ви­тие А. т. шло в осн. по пу­ти уве­ли­че­ния их мощ­но­сти и раз­ме­ров ра­бо­чей час­ти. В 1925 в ЦАГИ вве­де­на в дей­ст­вие круп­ней­шая для то­го вре­ме­ни А. т. С сер. 1940-х гг. на­ча­ла бы­ст­ры­ми тем­па­ми раз­ви­вать­ся ре­ак­тив­ная авиа­ция, что об­ус­ло­ви­ло соз­да­ние круп­ных транс­зву­ко­вых и сверх­зву­ко­вых А. т. В 1946 в ЦАГИ соз­да­на пер­вая в ми­ре транс­зву­ко­вая А. т. с пер­фо­ри­ро­ван­ной ра­бо­чей ча­стью, обес­пе­чив­шая прин­ци­пи­аль­но но­вые воз­мож­но­сти для про­ве­де­ния ис­сле­до­ва­ний в об­лас­ти пе­ре­хо­да че­рез ско­рость зву­ка. Раз­ви­тие ги­пер­зву­ко­вых А. т. и соз­да­ние спец. ги­пер­зву­ко­вых га­зо­ди­на­мич. ус­та­но­вок свя­за­но с по­яв­ле­ни­ем в 1960-х гг. бал­ли­стич. ра­кет и спус­кае­мых кос­мич. ап­па­ра­тов. С це­лью уве­ли­че­ния чи­сел Рей­нольд­са в А. т. для при­бли­же­ния к на­тур­ным зна­че­ни­ям в 1980-е гг. бы­ла реа­ли­зо­ва­на кон­цеп­ция крио­ген­ной аэ­ро­ди­на­мич. тру­бы.

Как устроена аэротруба и опасен ли полет в аэродинамической трубе?

Аэродинамическая труба - современное спортивно-развлекательное сооружение имитирующее свободное падение, как при затяжном прыжке с парашютом. При том, что данное развлечение достаточно бюджетное, оно, тем не менее, способно принести огромное количество положительных эмоций, приправленных некоторой долей экстрима. Немало такой популярности способствует и минимум противопоказаний, а также большое количество положительных свойств, в том числе и благотворное воздействие на здоровье человека – аэротруба работает таким образом, что тело парящего подвергается физической нагрузке, за счет которой после полета отмечается усталость мышц и сжигание большого количества калорий.

Как устроена аэротруба

Что такое аэротруба и как она устроена?

Аэродинамическая труба, представляет собой особое сооружение в виде вертикальной просторной трубы, в нижнюю часть которой вмонтирован сверхмощный вентилятор. Благодаря последнему, внутри трубы создается воздушный поток, скорость движения воздуха в котором составляет около 200 км/ч. Хотя для того, чтобы поднять тело человека в воздух, и удерживать в течение продолжительного времени хватит и скорости потока воздуха в 160 км/ч. К тому же менять скорость падения можно с помощью перемены позы. Любители парашютного спорта уверяют, что именно такое ощущение испытываешь в свободном падении, к примеру, при прыжке с парашютом.

Если говорить о материалах, то для конструкции аэротрубы используется специальное стекло, позволяющее гарантировать максимальное ощущение свободного полета. В целом аэротруба устроена таким образом, что не представляет ни малейшей опасности для человека, что подтверждается как многочисленными научными, так и практическими испытаниями.

На сегодняшний день существует большое количество различных типов аэротруб, от вида которых зависит размер полетной зоны, то есть ее высота и диаметр. Если говорить о минимальных значениях, то в этом случае диаметр открытой трубы должен составлять не менее 2,2 метров. В принципе подобных показателей хватает для человека любых параметров (даже если представить, что рост летающего составляет более 2 м, то в процессе полета человеческое тело принимает конкретную позу - ноги согнуты под углом 45 градусов, а руки под 90, поэтому свободного пространства будет вполне достаточно). Высота трубы также варьируется от зависимости от типа конструкции, в частности минимальная составляет 6 м. Если говорить о более мощных конструкциях, то их диаметр составляет от 2,5 до 3м. В некоторых случаях допускается полет в аэротрубе сразу нескольких человек, если речь идёт о профессиональных конструкциях, высота которых достигает 9 метров. Стоит отметить, что для профессиональных аэротруб используется гораздо более мощный вентилятор, и в целом такой аттракцион будет по душе уже опытным спортсменам, которые способны выполнять различные трюки в полете. Для новичков лучше выбирать наиболее минимальные показатели - так будет гораздо безопаснее нарабатывать навыки полёта, прежде чем перейти к серьезным конструкциям.

Аэротруба - это полезно и весело! Посмотрите наши акции и цены Акции Подарочные сертификаты Цены

Типы аэротруб

На сегодняшний день существует большое количество вертикальных аэротруб, которые используются в самых разных целях – для развлечения, для тренировок или как военные тренировочные варианты. Среди них выделяют несколько типов:

Мобильные аэротрубы – данный вариант является открытым и характеризуется сильной подачей воздуха и небольшим диаметром полетной зоны, составляющим около 2 м. Из-за небольших габаритов достаточно часто используется для различных массовых мероприятий в качестве аттракционов. Среди особенностей подобной конструкции стоит выделить повышенный шумовой фон, что в целом иногда может быть даже на руку, поскольку создает более реалистичное ощущение свободного полета.

Стационарные - такой вид аэротруб устанавливается на фундамент и отличается большим диаметром полетной зоны.

Что такое аэротруба и как она устроена?

Если рассматривать все типы аэротруб, а не только ВАТ (Вертикальную АэроТрубу) для тренировки парашютистов, то можно классифицировать их следующим образом:

  • дозвуковые;
  • околозвуковые;
  • трансзвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

Тут методом классификации является скорость и направление потока в рабочей части аэротрубы.

Насколько безопасен полет в аэротрубе

Новичков интересует, опасны ли полеты в аэротрубах. Как показывают исследования и практическое использование, свободное парение в аэротрубе, за счет ее особой конструкции абсолютно безопасны. Устройство аэротрубы позволяет парящему телу человека даже в том случае, если вентилятор окажется неисправен и резко выключится, мягко упасть на сетку, в первую очередь благодаря воздушному потоку. Также, при таких конструкциях обязательно присутствует инструктор, который контролирует правильность положения человека относительно потока воздуха и инструктирует его по поводу правил нахождения и полета в аэротрубе. По словам тех, кто уже пробовал такие полеты, сразу же после первых трёх-четырех минут парение в воздухе происходит абсолютно естественно, а после нескольких сеансов люди уже вполне могут летать самостоятельно без инструктора.

Что может помешать посещению

Что такое аэротруба и как она устроена?

Конечно, для полёта в аэродинамических трубах существуют и свои ограничения, в частности к ним относится беременность, избыточный вес, составляющий более 120 кг, серьёзные заболевания опорно-двигательного аппарата, перенесенные различные травмы и повреждения костей, а также послеоперационное состояние. Сюда же относится и остеопороз, который вызывает хрупкость костей.

Помимо этого, к полетам категорически не допускаются люди, находящиеся в состоянии наркотического и алкогольного опьянения, а также страдающие от психических заболеваний.

Для всех остальных, полет в аэротрубе станет прекрасной возможностью получить изрядную долю адреналина и острых, необычных ощущений. Такое развлечение также станет великолепным подарком близким и друзьям, позволяющим без малейшего риска получить непередаваемое ощущение свободного полета. В частности большой популярностью пользуются подарочные сертификаты на полеты, которые станут оригинальным подарком к любому празднику. Узнать дополнительную информацию про особенности, связанные с полетом в аэротркбе можно в разделе Вопросы и ответы

Что такое аэротруба? Аттракцион, который поможет взлететь » Блог Freezone

С появлением аэродинамической трубы любители экстрима могут наслаждаться свободным полетом в воздухе без риска для здоровья. Тренажер имеет безопасную, продуманную конструкцию, потому практически не имеет ограничений и может быть испытан широкой аудитории посетителей.  

  Содержание

1. Немного истории: цели использования аэродинамической трубы

2. Конструкция и принцип  работы аэродинамической трубы

3. Аэродинамический тренажер: развлечение или спорт?

4. Свободные полеты: от мала до велика

Немного истории: цели использования аэродинамической трубы

Наши предки с незапамятных времен мечтали о свободном полете и пытались создать аппараты, которые поднимут их к небесам. С годами было сделано десяток научных открытий и человечеству стали доступны различные технические средства, позволяющие преодолеть земную гравитацию. Одна из таких разработок – вертикальная аэродинамическая труба. Первую аэротрубу сконструировали в 1871 году в Великобритании. Устройство предназначалось для научных испытаний – с его помощью наблюдали за поведением твердых тел в потоке воздухе. Одновременно с тем аэродинамическая труба была построена в России. Оборудование использовалось для разработок и испытаний в военном деле. Изобретение аэротрубы стало большим вкладом для авиационной промышленности – она помогала тестировать парашюты, самолеты и другие летательные аппараты.

5.jpg

 Для полетов человека аэротрубу стали применять только в 1964 году в США. Установка помогала отрабатывать необходимые навыки космонавтам и спортсменам-парашютистам. Лишь только в 2000-х годах это изобретение стало использоваться как аттракцион. Свободные полеты в воздухе вызывают у людей потрясающие и незабываемые эмоции, что способствует популяризации такого развлечения. Опробовать прыжки в аэротрубе предлагает комплекс FREEZONE. Два огромных аэродинамических тренажера подойдут как для новичков, так и для профессиональных спортсменов, желающих повысить уровень своего мастерства при спуске с парашютом. Попробуем разобраться, что это такое аэродинамический симулятор?

Назад к содержанию

Конструкция и принцип работы аэродинамической трубы

 Аэротруба – это специализированный тренажер, что позволяет испытать ощущения свободного падения. Раньше подобные эмоции можно было пережить, только прыгнув с парашютом. Однако немногие готовы рискнуть жизнью, сиганув с самолета. Такое развлечение опасно, не каждому под силу преодолеть страх высоты. Аэротруба как аттракцион вполне безопасен. Пройдя инструктаж, посетитель легко освоиться в воздушном пространстве. Принцип действия технической установки основан на нагнетании воздуха. Аэротруба работает за счет одного или нескольких крупных вентиляторов, которые создают мощный воздушный поток скоростью 190 до 260 км/ч в вертикальной трубе. Конструкции современных тренажеров отличаются по нескольким параметрам:

  • Расположением вентилятора. Он может находиться в верхней или нижней части трубы.
  • Размером полетной зоны. Оборудование отличается высотой и диаметром.
  • Скоростью воздушного потока. Показатель зависит от мощности вентилятора аэротрубы.
  • 4.png

     Чтобы обезопасить человека, находящего внутри тренажера от травм, полетная зона ограждена специальной металлической сеткой. Она не позволит посетителю попасть в лопасти вентиляторов аэротрубы. В течение всего времени полета за рабочей зоной наблюдает оператор. Он регулирует скорость потока в зависимости от физической подготовки и навыков клиента. Перед каждым сеансом в аэродинамическом тренажере посетитель проходит инструктаж. В процессе тренер расскажет, как устроена аэротруба, ознакомит с техникой безопасности и проинформирует, что следует делать, находясь внутри симулятора. Опытный персонал центра FREEZONE поможет быстро привыкнуть к состоянию свободного падения, овладеть телом и за несколько сеансов совершать несложные трюки. Как работает аэротруба и ее принцип действия станет более понятен на практике.

    Назад к содержанию

    Аэродинамический тренажер: развлечение или спорт?

     Многие специалисты до сих пор расходятся во мнении, аэротруба что это: спортивный тренажер или экстремальное развлечение? Сегодня техническое устройство соединяет в себе несколько функций. Парашютисты тренируются в аэротрубах, чтобы улучшить профессиональные навыки и отточить трюки. Специалисты утверждают, что аэродинамический полет сравним с парашютными прыжками. Он дает в полной мере ощутить, что такое состояние свободного падения. Потому желающие совершить затяжной прыжок с парашютом изначально пробуют свои силы в аэротрубе. Для детей аэродинамический тренажер служит своеобразным увлекательным аттракционом.  Для взрослых аэротруба – это прекрасный активный отдых, интересный способ провести досуг.

    Благодаря тому, что аэродинамическая установка устроена как тренажер, кроме приятных эмоций вас ожидает:

    • Находясь внутри аэротрубы, посетитель активно сжигает калории.
    • При таких нагрузках прекрасно работает мышечный корсет, улучшается координация движений.
    • Другие экстремальные развлечения вряд ли подарят столько положительных эмоций как аэротруба. Организм во время тренировок синтезирует гормон счастья, который укрепляет нервную систему и улучшает иммунитет.

    парк развлечений Фризон.jpg

    Аэротруба устроена просто, однако ее применение довольно широко. Нередко походы в аэродинамический комплекс превращаются для людей в хобби. Сегодня часто проводят спортивные соревнования по полетам в трубе, где участники соревнуются в мастерстве, исполняют сложные трюки и даже танцуют. Большие достижения начинаются с малого. Запишитесь на первый сеанс полета в аэротрубе в комплексе FREEZONE на удобное время. Кроме того, у нас можно купить подарочный сертификат, чем вы порадуете своих родных или близких. 

    Назад к содержанию

    Свободные полеты: от мала до велика

     Принцип действия аэротрубы понятен, теперь осталось разобраться, кого допускают к данному виду развлечений. При соблюдении техники безопасности аэродинамический тренажер не причинит вреда здоровью человека. Главное в аэротрубе избегать касаний в боковые стенки, не хвататься за защитную сетку. К полетам допускаются даже дети (от 4 лет) и пожилые люди (до 70 лет). Показатели достаточно условны – все зависит от веса (он должен находиться в пределах 20-130 кг), состояния здоровья и физической формы. Аэротруба – это тренажер с минимальным списком противопоказаний. Не рекомендуют совершать полеты:

    • беременным;
    • лицам с психическими отклонениями;
    • при наличии заболеваний опорно-двигательной системы, остеопороза;
    • людям, недавно перенесшим травму.

     Комплекс FREEZONE приглашает всех желающих полетать в аэродинамической трубе и провести торжественные мероприятия в пределах центра. Наша команда организует великолепный праздник, будь то детский день рождение, корпоративное мероприятие или другое значимое событие. Сеансы полетов в аэротрубе станут неотъемлемой частью развлекательной программы. К услугам клиентов большой конференц-зал, хороший ресторан с собственной кухней, квалифицированный персонал, способный позаботиться о вашем комфорте. Окунитесь в мир удовольствия и экстрима. 

    Назад к содержанию

«Старейшая аэродинамическая труба страны раскрывает свои секреты» в блоге «Своими глазами»

Аэродинамическая труба Т-1-2 Центрального аэрогидродинамического института имени профессора Н.Е. Жуковского — старейшая в России. Уникальная конструкция, которая была изготовлена из дерева и за годы эксплуатации ни разу не потребовала серьезного ремонта, по-прежнему востребована. Здесь исследовали модели монументов Зураба Церетели, башни «Москвы-Сити» и другие необычные объекты. О крупнейшей в мире на момент создания аэротрубе рассказал начальник отдела научно-исследовательского Московского комплекса ЦАГИ, кандидат физико-математических наук, ведущий эксперт в области аэродинамики зданий, архитектурных и строительных сооружений Александр Борисович Айрапетов.

 © Бионышева Елена/Сделано у нас

—  Как была создана Т-1-2?

— Начну с того, что решение о создании ЦАГИ было принято в 1918 году. Сегодня это решение кажется мне сверхчеловеческим: в стране только завершилась революция и шла гражданская война, казалось бы, такие масштабные проекты были практически невозможны. Но начало было положено — и уже к Великой Отечественной войне институт вышел на первую позицию в мире.

Материальная база для исследований была создана невероятно быстрыми темпами — и это, прежде всего, аэродинамическая труба, о которой мы говорим. Т-1-2 была построена по идее Б.Н. Юрьева и Г. М. Мусинянца под руководством A.M. Черемухина. Она предназначалась для испытания фюзеляжей одномоторных самолетов, радиаторных установок, поплавков и других элементов летательных аппаратов. Аэротрубу запустили 31 декабря 1925 года, и она стала самой большой в мире на тот момент.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Что из себя представляла эта аэротруба?

— Конструкция трубы была выполнена из сосны — другого доступного материала в 1925 году в стране не было. Трудно поверить, но «инженер Божьей милостью» А. Черемухин подбирал древесину даже с учетом направления волокон. Сохранились документы с его расчетами, согласно которым требовалось 10 вагонов вагонки сушеной сосны и 1000 шпилек. Иными словами, все фермы соединялись без единого гвоздя, что делает нашу аэротрубу уникальной.

 © Бионышева Елена/Сделано у нас

Мы регулярно контролируем состояние трубы и ежегодно проводим мероприятия по пожарной безопасности — осуществляем пропитку всей деревянной конструкции антипожарными составами. Но ее создатели были поистине гениями: деревянная конструкция проработала 95 лет, и за это время в ней ни разу не проводился капитальный ремонт. Настолько хорошо сделано — ни просадок, ни искривлений! Единственной серьезной работой стал в 2018-2019 годах ремонт системы управления электроприводом вентилятора: был совершен переход на новую элементную базу и систему запуска, что невероятно облегчило нам производственный процесс.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Т-1 была оборудована четырехкомпонентными весами, а для Т-2 был создан винтовой прибор, приборы для изучения штопора самолета и установка для определения вращательных производных. Хотелось бы отметить и одну необычную особенность: в отличие от практически всех труб сходного класса, имеющих «О-образную» форму, она незамкнута и имеет очень длинный прямолинейный канал, а роль обратного канала играет просто внутренность здания, его «футляра» (С.А. Чаплыгин). По изначальному замыслу, одна рабочая часть должна быть небольшой, но скоростной, а другая — наоборот. Однако эти части не «ужились» вместе, потому как при работе малой части в большой нет необходимого для испытания качества потока. В итоге трубы «развели» через сдвижной диффузор.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Что испытывали в Т-1-2?

— Первыми в трубе были исследованы образцы крыльев, которые ранее проходили испытания в лаборатории Жуковского и за границей в Германии и Франции, а также модель самолета Фоккер. Кстати, одна из алюминиевых моделей крыла того времени до сих пор существует и используется как «контрольное крыло» в Т-1 и Т-5. Эксперименты показали, что результаты в Т-1-2 аналогичны данным, получаемым в зарубежных трубах. С 1927 года наша аэротруба стала обслуживать авиапромышленность, для чего в ЦАГИ была образована специальная секция аэродинамики самолета.

В довоенные годы под руководством выдающихся ученых ЦАГИ М.А. Лаврентьева, А.К. Мартынова, С.А. Чаплыгина, М.В. Келдыша, Л.И. Седова и А.Н. Туполева здесь проводили испытания таких моделей самолетов, как К-5, К-7, ДБ-3, И-1, И-5 и И-16.

— Проводились ли в советское время в трубе испытания каких-нибудь необычных объектов?

— Увы, многие данные утрачены: по официальной версии все довоенные материалы были утеряны во время перевозки их на барже по Волге в безопасный регион. Из экзотики — известно, что в трубе в прошлом испытывали модель вороны, живого лыжника-прыгуна с трамплина в постромках и автомобиль «Запорожец». Также мы случайно обнаружили в каком-то древнем шкафу материалы, согласно которым в Т-1-2 проводились испытания модели скульптуры В.И. Ленина, которой предполагалось увенчать Дворец Советов, запланированный на месте Храма Христа Спасителя.

В 50-х гг. прошлого века коллективы, которые возглавляли В.В. Белостоцкий и А.Б. Лотов, работали здесь над проектами экранопланов. Это была концепция советских ученых об использовании эффекта улучшения аэродинамических характеристик самолета при приближении к какой-то поверхности. Это был беспрецедентный проект и колоссальный масштаб исследований, проведенных в этой трубе, и подаривший миру такой грандиозный объект, который остальной частью человечества пока не освоен.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— Для чего вообще необходимы испытания в аэродинамической трубе?

— Наши исследования позволяют, например, предотвратить нежелательные явления, связанные с ветровым воздействием на здания и сооружения и их взаимным влиянием в городской застройке. Явления аэродинамического характера, о которых мы предупреждаем, не обязательно возникают сразу — они могут обнаружить себя, допустим, через 50 лет. Но от этого они не становятся менее опасными.

 © Бионышева Елена/Сделано у нас

Например, первоначально комплекс «Федерация» Москва-Сити должен был представлять собой две трехсотметровые пирамиды треугольного сечения с 500-метровой лифтовой шахтой между ними. На научно-техническом совете Москомархитектуры Московского правительства я заявил, что нет более эффективного способа привести конструкцию шахты в катастрофические колебания, чем возвести спроектированную за рубежом такую аэродинамическую композицию. После этого в ЦАГИ были произведены эксперименты на подвижной модели, подтвердившие мою правоту, — и в результате лифтовая шахта построена не была.

 © Бионышева Елена/Сделано у нас

Но часто вопрос о проведении экспериментов встает не на ранних этапах проектирования и строительства, а уже в период сдачи или даже после окончания проекта. В большинстве случаев исправить связанные с аэродинамической неустойчивостью здания или сооружения проблемы можно путем установки специальных устройств — гасителей колебаний. Они работают по сходному с амортизатором в автомобиле принципу: в гасителе колеблется тяжелая масса в вязкой среде. Установленный на высотное сооружение гаситель вместе со зданием формирует другую колебательную систему. Наша задача — предоставить данные, которые помогут спроектировать устройства для конкретного случая.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

— А какие интересные испытания проводились здесь в последние годы?

— Отвечу так: практически все московские объекты выше 70 метров прошли проверку в ЦАГИ. У нас даже появилась импровизированная выставка из трех десятков моделей, которыми мы занимались в течение последних 10 лет. Они являются собственностью заказчиков и оставлены на временное хранение. Среди них, например, новое колесо обозрения, которое будет находится в парке ВДНХ. Это был непростой объект для исследований: колесо состояло из сотен элементов с разными аэродинамическими характеристиками, подобных аттракционов на всей планете единицы.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Интересные результаты дали исследования Соборной мечети, построенной в Москве на Проспекте Мира. Ее модель с двумя башнями-минаретами установили в аэродинамической трубе, сообщив небольшую амплитуду колебаний одному из минаретов, помещенному на шарнире колебательной установки трубы. Было отмечено при определенном направлении ветра, что колебания не затухают, как ожидалось, а продолжаются с постоянной амплитудой. При увеличении амплитуды колебаний башня «захватывала» ее и не проявляла тенденции к затуханию. Аналогичные результаты получились и в следующие попытки. Таким образом, мы обнаружили новое явление, которому пока даже нет утвержденного названия.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

И, конечно, не могу не рассказать о скульптуре «Рабочий и колхозница». В момент создания — в начале 30-х годов — она в нашей аэродинамической трубе не испытывалась. Я полагаю, что это связано с запредельной скоростью, с которой ее создавали. Она делалась по технологиям, которые опережали авиационную технологию лет на тридцать. Так, стальная оболочка скульптуры смонтирована на стальном же пространственном каркасе, который каждым своим силовым элементом повторял скульптурную форму поверхности. По сравнению с прямыми стрингерами и круглыми (часто деревянными) шпангоутами фюзеляжа аэроплана тех лет — это было зримое будущее. В запястье левой руки Колхозницы размещался двухстепенной карданный шарнир, обеспечивающий гибкость узла. Дело в том, что сам монумент колебался на ветру с частотой 1 герц, а вот шарф Колхозницы, удерживаемый ее левой рукой — с частотой в несколько раз больше. И они, инженеры 30-х, это предвидели! Пока шарнир функционировал как положено, движения были состыкованы, но из-за отсутствия обслуживания в 90-е он просто заржавел, потерял подвижность и в результате шарф провис на 3 метра. В итоге скульптуру решили реставрировать. Тогда и подключился наш институт: мы провели обследование и воссоздали всю картину ветрового нагружения на скульптуру и ее элементы и кинематику ее колебаний.

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

 © Бионышева Елена/Сделано у нас

Напоследок хочу отметить, что сейчас у нас в ЦАГИ есть замысел превратить Т-2 в «ландшафтную» трубу, есть и соответствующие технические решения, так что мы готовы к новым вызовам и проектам.

 © Бионышева Елена/Сделано у нас

Фото: Алексей Клиндухов

Текст и фото: Бионышева Елена

Аэродинамическая труба - это... Что такое Аэродинамическая труба?

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это экспериментальная установка, разработанная для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет, мостов, зданий и др.) потоком, а также для экспериментального изучения аэродинамических явлений.

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Фрэнсис Герберт Уэнхем (Francis Herbert Wenham), член Совета Королевского авиационного общества Великобритании, создал первую закрытую аэродинамическую трубу в 1871 году.

Первую аэродинамическую трубу в России построил военный инженер В. А. Пашкевич в 1873 году, она использовалась исключительно для опытов в области баллистики.

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет воздушным потоком).

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

Литература

  • Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. — Л.: Судостроение, 1988.
  • Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3-х т. — Л.: Судостроение, 1987. — Т.1
  • Физическая энциклопедия / Редкол.: А. М. Прохоров (гл. ред.) и др. — М.: Советская энциклопедия, 1988, — Т.1 — С. 161—164 — 704 с., ил. — 100 000 экз.

Ссылки

Аэродинамическая труба — Википедия

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это техническое устройство, предназначенное для моделирования воздействия среды на движущиеся в ней тела. Применение труб в аэродинамике базируется на принципе обратимости движений и теории подобия физических явлений. Объектами испытаний в аэродинамических трубах являются модели натурных летательных аппаратов или их элементов (геометрически подобные, упруго подобные, термически подобные и т. д.), натурные объекты или их элементы, образцы материалов (унос материалов, каталитичность поверхности и т. д.).

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело, осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Первые в мире аэродинамические трубы были построены 1871 году членом Совета Королевского авиационного общества Великобритании Фрэнсисом Гербертом Уэнхемом (Francis Herbert Wenham) и русским военным инженером В. А. Пашкевичем[2][3]. Уэнхем использовал свою аэродинамическую трубу для исследований несущих свойств крыла[4], тогда как труба Пашкевича предназначалась для определения аэродинамических характеристик артиллерийских снарядов[3].

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет) воздушным потоком.

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

  1. ↑ ЦАГИ — Экспериментальная база
  2. ↑ Энциклопедия "Авиация". — М.: Научное издательство "Большая Российская Энциклопедия", 1994. — 736 с.
  3. 1 2 Авиация в России. — М.: Машиностроение, 1983.
  4. Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.

Литература

Ссылки

Аэродинамическая труба — Большая советская энциклопедия

Аэродинами́ческая труба

Установка, создающая поток воздуха или газа для эксперимент, изучения явлений, сопровождающих обтекание тел. С помощью А. т. определяются силы, возникающие при полёте самолётов и вертолётов, ракет и космических кораблей, при движении подводных судов в погруженном состоянии; исследуются их устойчивость и управляемость; отыскиваются оптимальные формы самолётов, ракет, космических и подводных кораблей, а также автомобилей и поездов; определяются ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения — мосты, мачты электропередач, дымовые трубы и т. п. В специальных А. т. исследуется нагревание и теплозащита ракет, космических кораблей и сверхзвуковых самолётов.

Опыты в А. т. основываются на принципе обратимости движения, согласно которому перемещение тела относительно воздуха (или жидкости) можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и температуру. Обычно в А. т. исследуется обтекание модели проектируемого объекта или его частей и определяются действующие на неё силы. При этом необходимо соблюдать условия, которые обеспечивают возможность переносить результаты, полученные для модели в лабораторных условиях, на полноразмерный натурный объект (см. Моделирование, Подобия теория). При соблюдении этих условий Аэродинамические коэффициенты для исследуемой модели и натурного объекта равны между собой, что позволяет, определив аэродинамический коэффициент в А. т., рассчитать силу, действующую на натуру (например, самолёт).

Прототип А. т. был создан в 1897 К. Э. Циолковским, использовавшим для опытов поток воздуха на выходе из центробежного вентилятора. В 1902 Н. Е. Жуковский построил А. т., в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/сек. Первые А. т. разомкнутой схемы были созданы Т. Стантоном в Национальной физической лаборатории в Лондоне в 1903 и Н. Е. Жуковским в Москве в 1906, а первые замкнутые А. т. — в 1907—1909 в Гёттингене Л. Прандтлем и в 1910 Т. Стантоном. Первая А. т. со свободной струей в рабочей части была построена Ж. Эйфелем в Париже в 1909. Дальнейшее развитие А. т. шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель), которая является одной из основных характеристик А. т.

В связи с развитием артиллерии, реактивной авиации и ракетной техники появляются сверхзвуковые А. т., скорость потока в рабочей части которых превышает скорость распространения звука. В аэродинамике больших скоростей скорость потока или скорость полёта летательных аппаратов характеризуется числом М = v/a (т. е. отношением скорости потока v к скорости звука а). В соответствии с величиной этого числа А. т. делят на 2 основные группы: дозвуковые, при М < 1, и сверхзвуковые, при М > 1.

Дозвуковые аэродинамические трубы. Дозвуковая А. т. постоянного действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой (рис. 2, а и б), а если необходимо создать А. т. с открытой рабочей частью, статическое давление в которой не равно атмосферному, струю в рабочей части отделяют от атмосферы т. н. камерой Эйфеля (рис. 2) (высотной камерой). Исследуемая модель 2 (рис. 1) крепится державками к стенке рабочей части А. т. или к аэродинамическим весам 3. Перед рабочей частью расположено Сопло 4, которое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и температурой (6 — спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление струи, выходящей из рабочей части. Компрессор (вентилятор) 7, приводимый в действие силовой установкой 8, компенсирует потери энергии струи; направляющие лопатки 9 уменьшают потери энергии воздуха, предотвращая появление вихрей в поворотном колене; обратный канал 12 позволяет сохранить значительную часть кинетической энергии, имеющейся в струе за диффузором. Радиатор 10 обеспечивает постоянство температуры газа в рабочей части А. т. Если в каком-либо сечении канала А. т. статическое давление должно равняться атмосферному, в нём устанавливают клапан 11.

Размеры дозвуковых А. т. колеблются от больших А. т. для испытаний натурных объектов (например, двухмоторных самолётов) до миниатюрных настольных установок.

А. т., схема которой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления.

Согласно теории подобия, для того чтобы аэродинамические коэффициенты у модели и натуры (самолёта, ракеты и т. п.) были равны, необходимо, кроме геометрического подобия, иметь одинаковые значения чисел М и Рейнольдса числа Re в А. т. и в полёте (Re = ρvl/μ, ρ — плотность среды, μ — динамич. вязкость, l — характерный размер тела). Чтобы обеспечить эти условия, энергетическая установка, создающая поток газа в А. т., должна обладать достаточной мощностью (мощность энергетической установки пропорциональна числу М, квадрату числа Re и обратно пропорциональна статическому давлению в рабочей части pc.

Сверхзвуковые аэродинамические трубы. В общих чертах схемы сверхзвуковой и дозвуковой А. т. аналогичны (рис. 1 и 3). Для получения сверхзвуковой скорости газа в рабочей части А. т. применяют т. н. сопло Лаваля, которое представляет собой сначала сужающийся, а затем расширяющийся канал. В сужающейся части скорость потока увеличивается и в наиболее узкой части сопла достигает скорости звука, в расширяющейся части сопла скорость становится сверхзвуковой и увеличивается до заданного значения, соответствующего числу М в рабочей части. Каждому числу М отвечает определённый контур сопла. Поэтому в сверхзвуковых А. т. для изменения числа М в рабочей части применяют сменные сопла или сопла с подвижным контуром, позволяющим менять форму сопла.

В диффузоре сверхзвуковой А. т. скорость газа должна уменьшаться, а давление и плотность возрастать, поэтому его делают, как и сопло, в виде сходящегося — расходящегося канала. В сходящейся части сверхзвуковая скорость течения уменьшается, а в некотором сечении возникает скачок уплотнения (Ударная волна), после которого скорость становится дозвуковой. Для дальнейшего замедления потока контур трубы делается расширяющимся, как у обычного дозвукового диффузора. Для уменьшения потерь диффузоры сверхзвуковых А. т. часто делают с регулируемым контуром, позволяющим изменять минимальное сечение диффузора в процессе запуска установки.

В сверхзвуковой А. т. потери энергии в ударных волнах, возникающих в диффузоре, значительно больше потерь на трение и вихреобразование. Кроме того, значительно больше потери при обтекании самой модели, поэтому для компенсации этих потерь сверхзвуковые А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвуковые А. т.

В сверхзвуковом сопле по мере увеличения скорости воздуха уменьшаются его температура Т и давление р, при этом относительная влажность воздуха, обычно содержащего водяные пары, возрастает, и при числе М — 1,2 происходит конденсация пара, сопровождающаяся образованием ударных волн — скачков конденсации, существенно нарушающих равномерность поля скоростей и давлений в рабочей части А. т. Для предотвращения скачков конденсации влага из воздуха, циркулирующего в А. т., удаляется в специальных осушителях 11.

Одним из основных преимуществ сверхзвуковых А. т., осуществляемых по схеме рис. 3, является возможность проведения опытов значительной продолжительности. Однако для многих задач аэродинамики это преимущество не является решающим. К недостаткам таких А. т. относятся: необходимость иметь энергетические установки большой мощности, а также трудности, возникающие при числах М > 4 вследствие быстрого роста требуемой степени сжатия компрессора. Поэтому широкое распространение получили т. н. баллонные А. т., в которых для создания перепада давлений перед соплом помещают баллоны высокого давления, содержащие газ при давлении 100 Мн/м2 (1000 кгс/см2), а за диффузором — вакуумные ёмкости (газгольдеры), откачанные до абсолютного давления 100—0,1 н/м2 (10-3—10-6 кгс/см2), или систему эжекторов (рис. 4).

Одной из основных особенностей А. т. больших чисел М (М > 5) является необходимость подогрева воздуха во избежание его конденсации в результате понижения температуры с ростом числа М. В отличие от водяных паров, воздух конденсируется без заметного переохлаждения. Конденсация воздуха существенно изменяет параметры струи, вытекающей из сопла, и делает её практически непригодной для аэродинамического эксперимента. Поэтому А. т. больших чисел М имеют подогреватели воздуха. Температура T0, до которой необходимо подогреть воздух, тем больше, чем больше число М в рабочей части А. т. и давление перед соплом p0. Например, для предотвращения конденсации воздуха в А. т. при числах М — 10 и p05 Мн/м2 (50 кгс/см2) необходимо подогревать воздух до абсолютной температуры T0 — 1000 К.

Развитие техники идёт в направлении дальнейшего увеличения скоростей полёта. Спускаемые космические аппараты «Восток» и «Восход» входят в атмосферу Земли с первой космической скоростью v1кос — 8 км/сек (т. е. М > 20). Космические корабли, возвращающиеся на Землю с Луны и др. планет, будут входить в атмосферу со второй космической скоростью v2кос ≥ 11 км/сек (М > 30). При таких скоростях полёта температура газа за ударной волной, возникающей перед летящим телом, превыщает 10000 К, молекулы азота и кислорода диссоциируют (распадаются на атомы), и становится существенной Ионизация атомов. Необходимо исследовать влияние этих процессов на силы, возникающие при обтекании тела, и тепловые потоки, поступающие к его поверхности. Для этого в А. т. необходимо получить не только натурные значения чисел М и Re, но и соответствующие температуры T0. Это привело к созданию новых типов А. т., работающих с газом, нагретым до высоких температур, значительно превышающих температуру, необходимую для предотвращения конденсации воздуха при данном числе М. К установкам этой группы относятся ударные трубы, импульсные установки, электродуговые установки и т. п.

Ударная труба (рис. 5, а) представляет собой ступенчатую цилиндрическую трубу, состоящую из двух секций — высокого 1 и низкого 2 давления, разделённых мембраной 3. В секции 1 содержится «толкающий» газ (обычно Не или Н), нагретый до высокой температуры и сжатый до давления p1. Секция низкого давления заполняется рабочим газом (воздухом) при низком давлении p2 Это состояние, предшествующее запуску А. т., соответствует на рис. 5, б времени t0. После разрыва мембраны 3 по рабочему газу начинает перемещаться ударная волна 4, которая сжимает его до давления р и повышает температуру. За ударной волной с меньшей скоростью двигается контактная поверхность 5, разделяющая толкающий и рабочий газы (момент времени t1). Давление и температура рабочего газа в объёме между ударной волной и контактной поверхностью постоянны. В дальнейшем ударная волна 4 пройдёт через сопло 6 и рабочую часть А. т. 7 в ёмкость 8, и в рабочей части установится сверхзвуковое течение с давлением p4 (момент времени t2).

Исследование обтекания газом модели 9 начинается в тот момент, когда ударная волна 4 пройдёт сечение, в котором расположена модель, и заканчивается, когда в это сечение придёт контактная поверхность. Поскольку скорость движения ударной волны в трубе 2 больше скорости контактной поверхности, очевидно, что длительность эксперимента в А. т. тем больше, чем больше длина «разгонной» трубы 2. В существующих ударных А. т. эта длина достигает 200—300 м.

Рассмотренный тип ударных А. т. даёт возможность получить температуры около 8000 К при времени работы порядка миллисекунд. Применяя ударные А. т. с несколькими мембранами, удаётся получить температуры до 18000 К.

Электродуговые А. т. Для решения многих задач аэродинамики можно ограничиться меньшими температурами, но требуется значительное время эксперимента, например при исследовании аэродинамического нагрева (См. Аэродинамический нагрев) или теплозащитных покрытий.

В электродуговых А. т. (рис. 6) воздух, подаваемый в форкамеру сопла, подогревается в электрической дуге до температуры ~6000 К. Дуга, образующаяся в кольцевом канале между охлаждаемыми поверхностями центрального электрода 1 и камеры 2, вращается с большой частотой магнитным полем, создаваемым индуктивной катушкой 7 (вращение дугового разряда необходимо для уменьшения эрозии электродов). А. т. этого типа позволяет получить числа М до 20 при длительности эксперимента в несколько сек. Однако давление в форкамере обычно не превышает 10 Мн/м2 (100 кгс/см2).

Большие давления в форкамере ~60 Мн/м2 (600 кгс/см2) и, соответственно, большие значения числа М можно получить в т. н. импульсных А. т., в которых для нагревания газа применяется искровой разряд батареи высоковольтных конденсаторов. температура в форкамере импульсной А. т. ~ 6000 К, время работы — несколько десятков мсек.

Недостатки установок этого типа — загрязнение потока продуктами эрозии электродов и сопла и изменение давления и температуры газа в процессе эксперимента.

Лит.: Пэнкхёрст Р. и Холдер Д., Техника эксперимента в аэродинамических трубах, пер. с англ., М., 1955; Закс Н. А., Основы экспериментальной аэродинамики, 2 изд., М., 1953; Хилтон У. Ф., Аэродинамика больших скоростей, пер. с англ., М., 1955; Современная техника аэродинамических исследований при гиперзвуковых скоростях, под ред. А. М. Крилла, пер. с англ., М., 1965; Исследование гиперзвуковых течений, под ред. Ф. Р. Риддела, пер. с англ., М., 1965.

М. Я. Юделович.

Аэродинамическая труба

Рис. 1. Дозвуковая аэродинамическая труба.

Аэродинамическая труба. Рис. 2

Рис. 2. Схемы рабочей части аэродинамической трубы (а — закрытая, б — открытая, в — открытая рабочая часть с камерой Эйфеля): 1 — модель; 2 — сопло; 3 — диффузор; 4 — струя газа, выходящего из сопла; 5 — камера Эйфеля; 6 — рабочая часть.

Аэродинамическая труба. Рис. 3

Рис. 3. Сверхзвуковая аэродинамическая труба: 1 — рабочая часть; 2 — модель; 3 — аэродинамические весы; 4 — сопло; 5 — диффузор; 6 — спрямляющие решётки; 7 — компрессор с двигателем ; 9 — обратный канал; 10 — теплообменник; 11 — осушитель воздуха.

Аэродинамическая труба. Рис. 4

Рис. 4. Две баллонные аэродинамические трубы с повышенным давлением на входе в сопло и с пониженным давлением на выходе из диффузора, создаваемым: а — двухступенчатым эжектором и б — вакуумным газгольдером; 1 — компрессор высокого давления; 2 — осушитель воздуха; 3 — баллоны высокого давления; 4 — дроссельный кран; 5 — ресивер сопла; 6 — сопло; 7 — модель; 8 — диффузор аэродинамической трубы; 9 — эжекторы; 10 — дроссельные краны; 11 — диффузор эжектора; 12 — быстродействующий кран; 13 — вакуумный газгольдер; 14 — вакуумный насос; 15 — подогреватель воздуха; 16 — радиатор.

Аэродинамическая труба. Рис. 5

Рис. 5. а — ударная аэродинамическая труба; б — график изменения давления в ударной трубе.

Аэродинамическая труба. Рис. 6

Рис. 6. Электродуговая аэродинамическая труба: 1 — центральный (грибообразный) электрод, охлаждаемый водой; 2 — стенки камеры, переходящие в сверхзвуковое сопло, охлаждаемые водой; 3 — рабочая часть с высотной камерой; 4 — модель; 5 — диффузор; 6 — дуговой разряд; 7 — индукционная катушка, вращающая дуговой разряд; I — контакты для подведения электрического тока дугового разряда; II — контакты для подведения электрического тока к индукционной катушке.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. Аэродинамическая труба — Экспериментальная установка для исследования явлений и процессов, сопровождающих обтекание тел потоком газа. В аэродинамической трубе экспериментально определяются действующие на ЛА аэродинамические силы и моменты... Авиационный словарь
  2. аэродинамическая труба — Установка для аэродинамических исследований летательных аппаратов, автомобилей, спортивных судов и т. п. Известно, что любое движущееся в воздухе тело испытывает сопротивление воздушной среды. И чем выше скорость, тем сопротивление больше. Техника. Современная энциклопедия
  3. АЭРОДИНАМИЧЕСКАЯ ТРУБА — АЭРОДИНАМИЧЕСКАЯ ТРУБА — установка, в которой создается воздушный поток для экспериментального изучения явлений, возникающих при обтекании воздухом твердых тел, главным образом летательных аппаратов и их частей. Большой энциклопедический словарь
  4. АЭРОДИНАМИЧЕСКАЯ ТРУБА — Установка, создающая поток воздуха или др. газа для эксперим. изучения явлений, сопровождающих обтекание тел. В А. т. проводятся эксперименты, позволяющие: определять силы, действующие на самолёты и вертолёты, ракеты и косм. Физический энциклопедический словарь
  5. АЭРОДИНАМИЧЕСКАЯ ТРУБА — АЭРОДИНАМИЧЕСКАЯ ТРУБА, камера, в которой модели разного масштаба и даже полноразмерные автомобили и летательные аппараты испытываются в управляемом воздушном потоке. Научно-технический словарь
Аэродинамическая труба. Рис. 6

Как работают аэродинамические трубы | HowStuffWorks

Человечество всегда завидовало птицам. Мы могли бы передать часть поедания червей, но их мастерство полета помогло разжечь наше стремление взлететь в небеса. В той или иной степени люди осуществили мечту о полете. Но 727-е, ракеты, космические шаттлы, сверхбыстрые гоночные автомобили, катера, гоночные велосипеды и даже типы компьютерных микросхем, возможно, никогда не были бы реализованы, если бы не одно связанное с ними технологическое развитие - аэродинамическая труба.

Аэродинамические трубы используются инженерами для проверки аэродинамики многих объектов, от крыльев реактивных двигателей до лобовых стекол автомобилей. Аэродинамика как наука изучает потоки воздуха или газов вокруг движущегося объекта. Обладая лучшим пониманием того, как воздух движется вокруг (или через) объекты, производители могут разрабатывать и создавать более быстрые, безопасные, надежные и эффективные продукты всех видов.

Ветер Матери-Земли - от колеблющегося, нестабильного бриза до ураганных ударов - является заведомо непостоянным состоянием и поэтому практически бесполезен для аэродинамических испытаний.С другой стороны, аэродинамические трубы обеспечивают контролируемую среду для такого рода испытаний.

Аэродинамические трубы - это просто полые трубы; с одной стороны, у них есть мощные вентиляторы, которые создают поток воздуха внутри туннеля. Некоторые туннели имеют размер рабочего стола и подходят для тестирования только очень маленьких объектов. Другие туннели представляют собой массивные сооружения, в которых инженеры испытывают полноразмерные самолеты и автомобили. Хотя тестовые материалы (обычно) остаются неподвижными, из-за быстрого потока воздуха внутри туннеля создается впечатление, что объекты движутся.

Как правило, внутри аэродинамических труб находятся датчики и инструменты, которые дают ученым точные данные о взаимодействии объекта с ветром. И часто есть окна, которые позволяют тем же ученым визуально наблюдать за экспериментами. Обладая этими данными и наблюдениями, инженеры решают такие переменные аэродинамики, как давление, скорость, температура и плотность. Они измеряют подъемную силу, сопротивление, ударные волны и другие условия, влияющие на самолеты и другие устройства, летящие на ветру.Кроме того, эти туннели могут помочь инженерам выяснить, как ветер взаимодействует с неподвижными объектами, такими как здания и мосты, и найти способы сделать их сильнее и безопаснее.

Короче говоря, многие из наших современных чудес стали более совершенными благодаря аэродинамическим трубам. Но именно мечта о полете впервые вдохнула жизнь в эти легкие машины. Далее вы узнаете, как появились аэродинамические трубы и как именно они работают. Однако сначала возьмитесь за шляпу двумя кулаками, потому что это тот предмет, который может вас поразить.

,

Как работает аэродинамическая труба?

Реклама

Криса Вудфорда. Последнее обновление: 30 мая 2020 г.

Предположим, вы только что создали гигантского нового пассажира. самолет и теперь вы хотите проверить это по-настоящему. Вы могли бы потратить миллионы долларов, построив его из блестящего титана металла и прокатитесь на нем по взлетно-посадочной полосе, чтобы увидеть, действительно ли он летает - но что если вы ошиблись в расчетах? Что, если ваш самолет взлетит двадцать секунд, затем внезапно падает, как камень, и приземляется на город забиты 5 миллионами человек? Это не лучший способ тестирования что-то настолько опасное.Вот почему конструкторы самолетов пробуют сначала на земле, используя масштабные модели в аэродинамических трубах. Давайте принимать посмотрим, как они работают!

Фото: Лопасти вентилятора внутри одна из гигантских аэродинамических труб в Исследовательском центре НАСА в Лэнгли. Обратите внимание на человека внутри! Фото любезно предоставлено НАСА в свободном доступе.

Зачем нужны аэродинамические трубы?

Фото: Основная идея: закрепить самолет на земле и продуть воздух мимо него. Фотография самолета F-86, установленного в полномасштабной аэродинамической трубе размером 40 x 80 футов в авиационной лаборатории NACA Ames, Moffett Field, Калифорния, сделанная в 1954 году.Обратите внимание на инженера, стоящего под самолетом. Любезно предоставлено НАСА в палате общин.

Разработка самолетов, которые будут летать быстро, эффективно и экономично - это обеспечение плавного обтекания крыльями воздуха и мимо их трубчатых тел. Это называется наукой о аэродинамика. Когда самолет поднимается в воздух, нет простого способа увидеть как воздух движется мимо него (хотя у опытного летчика-испытателя будет хорошая идея, что может вызвать проблемы). Если есть крупный дизайн дефект, самолет вообще не поднимется в воздух.Вот почему каждый современный космический корабль и самолет сначала испытано на земле в аэродинамической трубе: здание в виде трубы через который воздух обрушивается с очень высокой скоростью.

Основная идея аэродинамической трубы проста: если вы не можете сдвинуть самолет в воздухе, почему бы вместо этого не пропустить воздух мимо самолета? С научной точки зрения это точно так же. Если самолет тащит (вызывает сопротивление воздуха), когда он летит по небу, воздух будет перетащите точно так же, когда вы стреляете мимо неподвижной модели самолета на земле.

Тебе ничто не мешает построить супергигантскую аэродинамическую трубу и испытания модели вашего самолета в натуральную величину - и действительно, американский у космического агентства НАСА есть такие аэродинамические трубы. Но большая часть время гораздо дешевле использовать небольшую модель самолета в намного меньше аэродинамической трубы.

Как работает аэродинамическая труба?

Фото: Аэродинамическая труба похожа на гигантскую трубу. Обратите внимание на широкие внешние секции и гораздо более узкие внутренние секции, где туннель производит высокоскоростной воздух в центральной испытательной лаборатории.Фотография 16-футовой высокоскоростной аэродинамической трубы в авиационной лаборатории НАСА Эймс, Моффетт-Филд, Калифорния, сделанная в 1948 году. Любезно предоставлено НАСА в палате общин.

Аэродинамическая труба немного похожа на огромную трубу, которая огибает себя по кругу с вентилятором в середина. Включите вентилятор, и воздух будет обдувать трубу. Добавьте небольшую дверь, чтобы вы могли войти, и тестовую комнату посередине и, эй Престо, у вас есть аэродинамическая труба. На практике это немного больше сложнее, чем это.Вместо того, чтобы иметь однородную форму на всем пути круглая, труба в одних местах шире, в других - намного уже. Там, где труба узкая, воздух должен ускоряться, чтобы пройти. чем уже труба, тем быстрее она должна идти. Он работает так же, как велосипедный насос, где воздух ускоряется, когда вы выталкиваете его через узкую насадку, и как ветреная долина где ветер дует намного сильнее, сосредоточенный холмами по обе стороны.

Наличие аэродинамической трубы с узкими секциями - простой способ построить больше скорости - а скорость - это то, чего нам нужно много.Чтобы проверить сверхзвуковой самолет, вам нужна скорость ветра примерно в пять раз быстрее, чем ураган. А для тестирования чего-то вроде космического шаттла нужно подуть ветер. еще в десять раз быстрее. Ветерок!

Ключевые части типичной аэродинамической трубы

Изображение: вид сверху на типичную аэродинамическую трубу.

Загляните в аэродинамическую трубу и, если вам не оторвет уши, вы найдете что-то вроде этого:

  1. Приводные двигатели: это гигантские электродвигатели, вращающие вентилятор.
  2. Компрессор: вентилятор (или вентиляторы), вырабатывающий высокоскоростной ветер.
  3. Сверхзвуковая высокоскоростная испытательная секция: Здесь находится модель самолета.
  4. Лопатки: это аэродинамические поверхности, расположенные по углам, чтобы поворачивать воздух на 90 градусов без потери энергии.
  5. Акустический глушитель: В аэродинамических трубах шумно! Глушители помогают снизить шум и более точно имитировать реалистичный воздушный поток.
  6. Лопатки
  7. Дозвуковая, низкоскоростная испытательная секция: с другой стороны есть испытательная камера меньшего размера, где воздух движется немного медленнее.
  8. Входные двери: Ученые должны как-то попасть внутрь!
  9. Осушитель воздуха: Эта секция удаляет влагу из воздушного потока.

Измерение расхода воздуха

Фото: Хотите провести небольшое испытание в аэродинамической трубе, но не можете позволить себе миллионы. вам нужно потратиться на все это модное оборудование? Нет проблем: для этого есть приложение! Найдите "аэродинамическую трубу" в своем любимый магазин приложений, и вы найдете немало симуляторов, с которыми вы можете играть на своем смартфоне или планшете.Это снимок экрана, который я сделал с помощью бесплатного приложения Wind Tunnel Lite от Algorizk, которое позволяет вам протестировать несколько основных форм (например, автомобили и крылья) при разной скорости ветра. Также есть профессиональная версия, которая позволяет вам контролировать гораздо больше вещей (тягу винта, вязкость жидкости, трение и скорость ветра). Учителей стоит поискать!

Воздух невидим, так как же узнать, летит ли самолет? ну или плохо внутри туннеля? Есть три основных способа. Ты можешь использовать дымовой пистолет, чтобы окрасить воздушный поток в белый цвет, а затем посмотреть, как дым смещается и закручивается при прохождении самолета.Вы можете взять то, что называется Фотография Шлирена, на которой изменяются скорость воздуха и давление появляется, чтобы вы могли их видеть. Или вы можете использовать анемометры (приборы для измерения скорости воздуха) для измерения скорости ветра разные точки вокруг плоскости. Вооруженный вашими измерениями и множество сложных аэродинамических формул, вы можете выяснить, насколько хорошо или Плох ваш самолет и действительно ли он будет держаться в небе.

Когда вы будете довольны, вы можете построить себе прототип (тестовую модель) и попробуйте по-настоящему - или убедите кого-нибудь попробовать это для вас.Пилоты-испытатели зарабатывают огромные деньги из-за рисков, которые они брать. Но они намного счастливее, приковывая себя к своим сиденья, зная, что все, что они собираются попробовать, уже проверено в аэродинамической трубе!

Проверка статики

Хотя аэродинамические трубы наиболее известны испытанием новых самолетов и космических ракет - транспортных средств, которые через (теоретически) статический воздушный поток - их можно использовать и в обратном направлении: для моделирования того, как быстро движущиеся ветры влияют на статических конструкций, таких как высотные здания и мосты.Архитекторам и инженерам-строителям необходимо учитывать не только нагрузки, которые сильный ветер накладывает на их конструкции (буквально, могут ли здания сдуваться), но и то, как такие вещи, как небоскребы, улавливают ветер и отбрасывают его на уровень земли, создавая «нисходящие сквозняки» и потенциально опасные вихри, которые могут дуть люди с ног. Подобные проблемы легко изучить и исправить с помощью реалистичных моделей в аэродинамических трубах.

Кто изобрел аэродинамическую трубу?

Фото: проект НАСА 1948 года для сверхзвуковой аэродинамической трубы.Предоставлено Исследовательским центром Эймса НАСА.

Большинство людей согласятся, что братья Райт проделали изящный трюк, когда первый полет с двигателем в декабре 1903 года. Уловка! Они потратили годы на изучение аэродинамики и усовершенствовали конструкцию своих крыльев, которые они назвали «самолетами». Пока Райтс сделал большинство испытаний на открытом воздухе, современные самолеты с большей вероятностью будут испытываться в помещении - благодаря проницательность британского авиационного инженера-самоучки Фрэнка Уэнама (1824–1908), который изобрел аэродинамическую трубу в 1871 году.В отличие от огромных современных туннелей, оригинал Уэнама имел (как он сам выразился) «ствол 12 футов [3,7 м] в длину и 18 дюймов [46 см] в квадрате, чтобы направлять течение горизонтально и параллельно», и воздух, который свистел вокруг он двигался не быстрее 64 км / ч (40 миль в час). Сравните это с самой большой в мире современной аэродинамической трубой в Исследовательском центре НАСА Эймса, которая более чем в 100 раз длиннее (430 м или 1400 футов в длину), имеет испытательную секцию с общей площадью 24 м × 37 м (80 футов × 120 футов) и производит ветер. до 185 км / ч (115 миль / ч).Подобные современные аэродинамические трубы в огромном долгу перед забытыми пионерами, такими как Уэнам, чьи идеи помогли открыть современную науку аэродинамики, позволив миллионам из нас подниматься в небо каждый божий день!

Дополнительная литература

Узнать больше

На этом сайте

На других сайтах

Статьи

  • Октябрь 1960: Высокоскоростные аэродинамические трубы от Джона Экселла. «Инженер», 15 октября 2014 года. Захватывающий вид на классические установки для испытаний ветра 1960-х годов недалеко от Престона, Англия.
  • , 27 мая 1931 года: Аэродинамическая труба позволяет самолетам «летать» по земле, автор Джейсон Паур. Wired, 27 мая 2010 г. Празднование открытия первой в мире полномасштабной аэродинамической трубы, которая открылась на Лэнгли Филд недалеко от Хэмптона, Вирджиния, в мае 1931 года.
  • Внутри массивной аэродинамической трубы GM, автор Чак Скватриглиа. Wired, 16 октября 2008 г. На что действительно похожа аэродинамическая труба внутри? Предлагаем вашему вниманию увлекательный фототур по туннелю, предназначенному для испытаний автомобилей.
  • Ultimate Test, Макс Гласкин: инженер, 15 января 2008 г.Как в автоспорте используются аэродинамические трубы для катания на дорогах.
  • «Борьба в аэродинамической трубе, чтобы не слышать звук» Джим МакГроу. Нью-Йорк Таймс. 21 октября 1998 года. Старая, но интересная (и все еще актуальная) статья, описывающая, как производители автомобилей используют тесты в аэродинамической трубе, чтобы уменьшить неприятный шум ветра.
  • Аэродинамические трубы, используемые по-новому, Вальтер Томашевски. The New York Times, 30 августа 1970 года. Статья из архива Times объясняет, как аэродинамические трубы использовались для таких вещей, как дизайн небоскребов в конце 1960-х годов.Одним из заметных пионеров этой работы был Джек Чермак из Университета штата Колорадо.
  • Аэродинамическая труба Райта 1901 года: Wright-Brothers.org, без даты. Очаровательный фотографический вид туннеля, который Райт использовал для своих экспериментов (второй в США).

Книги

Патенты

Для более глубоких технических подробностей стоит взглянуть на патенты - и вот несколько примеров, которые я для вас вытащил. В файле есть еще десятки, некоторые из которых касаются конструкции туннеля, а другие сосредоточены на том, как модели могут поддерживаться или перемещаться для имитации реалистичных движений самолета.Вы можете найти гораздо больше, выполнив поиск в базе данных USPTO (или альтернативе, такой как Google Patents):

  • Патент США 1 635 038: Аэродинамическая труба для полета моделей. Автор Элиша Фалес, 5 июля 1927 года. Фалес работал на Воздушную службу армии США и внес важный вклад в науку об аэродинамике. В 1918 году, работая с Фрэнком Колдуэллом, он построил первую высокоскоростную (хотя и дозвуковую) аэродинамическую трубу в Соединенных Штатах для тестирования конструкции пропеллера.
  • Патент США 2152317: Аэродинамическая труба и метод определения контуров линий тока Альберта Дж.Kramer, 28 марта 1939 г. Этот патент описывает подготовку моделей для испытаний в аэродинамической трубе.
  • Патент США 2 677 274: сверхзвуковой аппарат в аэродинамической трубе, автор Аллен Пакетт, 4 мая 1954 г. Когда самолеты направлялись к звуковому барьеру, то же самое делали и аэродинамические трубы! В этом патенте описаны некоторые проблемы испытаний в высокоскоростной аэродинамической трубе и способы их решения.
  • Патент США 2711648: механизм поддержки модели аэродинамической трубы, автор Ральф Карлстранд, Northrop Aircraft, Inc., 28 июня 1955 г.Как вы имитируете колебания и флаттер в аэродинамической трубе, если ваша модель неподвижна? Вам нужен механизм, который может воспроизвести эти движения в вашей модели.
  • Патент США 3111843: Гиперзвуковая аэродинамическая труба Раймонда Фредетта, Cook Electric, 26 ноября 1963 г. Есть ли предел скорости полета самолета? В этом нам помогают аэродинамические трубы.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2019. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Поделиться страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2008/2019) Аэродинамические трубы. Получено с https://www.explainthatstuff.com/windtunnel.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте ...

,

Аэродинамическая труба | авиационная техника

Аэродинамическая труба , устройство для создания контролируемого потока воздуха с целью изучения эффектов движения в воздухе или сопротивления движущемуся воздуху на моделях самолетов и других машин и объектов. При условии, что воздушный поток контролируется должным образом, не имеет значения, предназначена ли испытываемая стационарная модель для движения по воздуху, как самолет, или для того, чтобы выдерживать давление ветра, стоя на месте, как здание.

аэродинамическая труба Модель самолета в аэродинамической трубе НАСА. НАСА

Подробнее по этой теме

аэрокосмическая промышленность: испытания в аэродинамической трубе

Компьютерное моделирование сократило количество необходимых испытаний в аэродинамической трубе, но последнее остается важной частью разработки ...

В аэродинамических трубах с открытым концом в начале 20-го века воздух медленно проходил через секцию туннеля с большим диаметром, ускорялся в испытательной секции, напоминающей сопло, и снова замедлялся в секции диффузора с большим диаметром перед тем, как попасть в атмосферу. ,Поскольку в таком туннеле с разомкнутым контуром можно было мало контролировать давление, температуру и влажность воздуха, он был вытеснен конструкцией с замкнутым контуром, в которой воздух, продуваемый через испытательную секцию, содержался в круглом или прямоугольном туннеле. , прошел через вентиляторы и вернулся в испытательную секцию с помощью поворотных лопаток. Скорость воздуха регулируется путем изменения скорости вращающихся вентиляторов или путем регулировки угла лопастей вентилятора. В высокоскоростных туннелях в низкоскоростных секциях устанавливаются системы водяного охлаждения для охлаждения оборотного воздуха.

Аэродинамические трубы классифицируются как низкоскоростные и высокоскоростные; они также подразделяются на дозвуковые (80 процентов скорости звука), околозвуковые (примерно скорость звука), сверхзвуковые (до 6-кратной скорости звука), гиперзвуковые (от 6 до 12-кратной скорости звука) и гиперскорость (более чем в 12 раз превышает скорость звука). Чтобы повторить температуру полета на скорости 10 000 миль (16 000 км) в час и более, испытательный воздух должен быть нагрет до температуры намного выше точки плавления обычных конструкционных материалов; следовательно, такие туннели работают по импульсному принципу и только в течение очень коротких периодов времени, порядка нескольких тысячных долей секунды.

Области применения исследований в аэродинамической трубе варьируются от рутинных испытаний планеров до фундаментальных исследований пограничного слоя - медленно движущегося слоя воздуха, прилегающего к любой поверхности тела, подверженной воздействию ветра. Измерения давления воздуха и других характеристик во многих точках модели дают информацию о том, как распределяется общая ветровая нагрузка. Помимо самолетов и космических аппаратов, аэродинамические исследования в аэродинамических трубах были очень прибыльными устройствами для решения задач проектирования автомобилей, лодок, поездов, мостов и строительных конструкций.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской. Подпишитесь сегодня ,

Список аэродинамических труб - Повторно опубликована в Википедии // WIKI 2

Комментариев: Низкоскоростная аэродинамическая труба Аэродинамическая труба для стабилизации
Имя Статус Размер Используйте Расположение
ACE Climatic аэродинамическая труба Д 46 футов x Ш 14,7 футов x В 9,5 футов (Д 14,3 м x Ш 4,5 м x В 2,9 м) Полная шкала: автомобилестроение, автоспорт, велоспорт, лыжи, архитектура, транспорт, грузовики, разработка продукции Ошава, Онтарио, Канада Доступен и доступен для всех отраслей, требующих обслуживания в аэродинамической трубе или климатических услуг
А2 аэродинамическая труба Испытательная секция Ш ~ 14 футов x В ~ 10 футов x Д ~ 20 футов Полномасштабный универсальный Мурсвилл, Северная Каролина, США ~ $ 500 / час полномасштабный гоночный автомобиль, мотоцикл, велосипед
Аэродинамическая труба AeroDyn Полномасштабные гоночные автомобили NASCAR Мурсвилл, Северная Каролина, США
Aircraft Research Association Ltd (ARA) в рабочем состоянии 9 футов (2.74 м) x 8 футов (2,44 м) Бедфорд, Великобритания Трансзвуковой замкнутый контур, непрерывная аэродинамическая труба. Число Маха 0 - 1,4. Число Рейнольдса от 3,5 до 16,7 млн ​​/ м [1]
Центр автомобильных исследований (ARC) Ш 2,3 м x В 2,1 м (Ш 7,4 футов x В 6,9 футов) Дозвуковые исследования и разработки, в том числе: модель автомобильной дороги в масштабе 50%, проектирование и оптимизация ветряных турбин, а также езда на велосипеде Индианаполис, Индиана, США Аэродинамическая труба имеет подвижную плоскость заземления, а также всасывание первичного и вторичного пограничного слоя.Возможности дозвуковых испытаний для автоспорта, серийных автомобилей, коммерческих грузовых автомобилей, езды на велосипеде, ветряных турбин, архитектуры, аэрокосмической промышленности, академических исследований и промышленных исследований и разработок.
Боинг Дозвуковая (низкоскоростная) аэродинамическая труба - BVWT в рабочем состоянии 20 x 20 футов Филадельфия, Пенсильвания Свяжитесь с Boeing Technology Services для получения дополнительной информации или использования оборудования Boeing. [2]
Трансзвуковая аэродинамическая труба Boeing - BTWT в рабочем состоянии 8 x 12 футов Сиэтл, Вашингтон
Полизоническая (сверхзвуковая) аэродинамическая труба Boeing - PSWT в рабочем состоянии 4 x 4 футов г.Луи, Миссури
Аэродинамическая труба Boeing Icing - BRAIT в рабочем состоянии 4 x 6 футов Сиэтл, Вашингтон
Низкоскоростной аэроакустический комплекс Boeing - LSAF в рабочем состоянии Зависит от Сиэтл, Вашингтон
Аэродинамическая труба Boeing Propulsion - BPWT (9x9) в рабочем состоянии 9 x 9 футов Агрегат низкоскоростной атмосферный невозвратный индукционного типа.Типичные модели включают впускные отверстия двигателей, выхлопные сопла, малые двигатели или механические транспортные средства, аэродинамические полу- или полные модели, а также реверсоры тяги. Сиэтл, Вашингтон
Cal Poly Д 14 футов x Ш 4 фута x В 3 фута (Д 4,3 м x Ш 1,22 м x В 0,91 м) Низкая скорость: тестирование масштабных моделей, аэрокосмическая промышленность, автомобилестроение, инфракрасная промышленность Сан-Луис-Обиспо, Калифорния, США Здесь протестированы стартапы, крупные аэрокосмические корпорации и другое научное оборудование.Внедрение рулонной дороги продолжается.
Аэродинамическая труба Calspan в рабочем состоянии 8 футов × 8 футов (2,4 м × 2,4 м) Дозвуковой / Трансзвуковой Buffalo, Нью-Йорк, США Единственная в США аэродинамическая труба, находящаяся в независимом владении и эксплуатации.
GVPM в рабочем состоянии Ш 14 м x В 3,8 м x Д 36 м - Ш 4 м x В 3,8 м x Д 4 м Строительство, мосты, железнодорожные, авиационные, общего назначения Милан - Италия Вертикально расположенная аэродинамическая труба с замкнутым контуром с двумя испытательными секциями: одна атмосферная (максимальная скорость 16 м / с), одна авиационная (максимальная скорость 55 м / с) с возможностью испытания с открытой / закрытой струей.
CSTB Аэродинамическая труба Жюля Верна в рабочем состоянии Ш 6 м x 5 м x 12 м [3] Автомобильная, железнодорожная, полномасштабная, общего назначения CSTB Нант, Франция Три испытательных участка со скоростью ветра до 280 км / ч
CSTB Аэродинамическая труба Жюля Верна в рабочем состоянии Ш 10 м x В 7 м x Д 20 м [4] Автомобильная промышленность, рельс, строительные компоненты, обледенение, снег, жаркий и холодный климат CSTB Нант, Франция
CSTB Jules Verne атмосферные аэродинамические трубы в рабочем состоянии Ш 4 м x В 2.5 м x 20 м [5] Ветровая инженерия, Масштабные постройки, Рассеивание CSTB Нант, Франция Две аэродинамические трубы
Европейская трансзвуковая аэродинамическая труба Transonic Кельн, Германия
Восьмифутовый высокоскоростной туннель NASA в Лэнгли

[6]

8 футов (2,4 м) Высокая скорость Хэмптон, Вирджиния, США
NASA Langley 30- на 60-футовая полномасштабная аэродинамическая труба

[7]

снесли 30 футов (9.1 м) на 60 футов (18 м) Полномасштабный самолет Хэмптон, Вирджиния, США Самая старая действующая аэродинамическая труба НАСА до ее закрытия в октябре 1995 года.
Аэродинамическая труба Гленна Л. Мартина Испытательная секция 7,75 футов x 11,04 футов (угловые скругления) Низкая скорость: испытания масштабных моделей, автомобилестроение, аэрокосмическая промышленность Мэрилендский университет, Колледж-Парк, Мэриленд, США
Гиперзвуковой испытательный центр НАСА имени Гленна Гиперзвуковой Сандаски, Огайо, США
Аэродинамическая труба Modine 46 Д x 14 Ш x 13.5 H футов Расин, Висконсин, США Климатические испытания в аэродинамической трубе, большие грузовики и легковые автомобили
Аэродинамическая труба Эймса 7 × 10 футов (эксплуатируется армией США) 7 футов × 10 футов (2,1 м × 3,0 м) Маунтин-Вью, Калифорния, США
Аэродинамическая труба Сан-Диего Сан-Диего, Калифорния, США Крупнейшие авиастроители, производители велосипедов и профессиональные спортсмены
NASA Ames Trisonic в аэродинамической трубе Эль-Сегундо, Калифорния, США
НАСА Национальный полномасштабный аэродинамический комплекс Эймса (эксплуатируется ВВС США) 40 футов × 80 футов (12 м × 24 м) Дозвуковой Маунтин-Вью, Калифорния, США
Аэродинамическая труба NASA Ames Unitary Plan Маунтин-Вью, Калифорния, США
Туннель с переменной плотностью Переменная плотность Хэмптон, Вирджиния, США
Т-101; Центральный аэрогидродинамический институт Ш 14 м x Д 24 м [8] Жуковский, Россия
Т-105; Центральный аэрогидродинамический институт L 7.5м; диаметр сопла 4,5 м [9] Вертикальный Жуковский, Россия
Полный масштаб сдвига ветра, катящаяся дорога, автомобильная аэродинамическая труба Сдвиг ветра Конкорд, Северная Каролина, США
NASA Ames Hypersonic Propulsion Integration 16 Inch Shock 16 дюймов (41 см) Гиперзвуковая силовая установка Маунтин-Вью, Калифорния, США
NASA Ames Hypersonic Propulsion Integration Direct-Connect Гиперзвуковая силовая установка Маунтин-Вью, Калифорния, США
НАСА Национальный полномасштабный аэродинамический комплекс Эймса (эксплуатируется ВВС США) 80 футов × 120 футов (24 м × 37 м) Дозвуковая атмосферная Маунтин-Вью, Калифорния, США Самая большая аэродинамическая труба в мире
НАСА Эймс Дозвуковой 12 футов высокого давления 12 футов (3.7 м) Дозвуковой Маунтин-Вью, Калифорния, США
NASA Ames Supersonic 9 × 7 футов высотой Rn 9 футов × 7 футов (2,7 м × 2,1 м) Сверхзвуковой Маунтин-Вью, Калифорния, США
NASA Ames Transonic, 11 футов высотой, Rn 11 футов Transonic Маунтин-Вью, Калифорния, США
NASA Glenn 10- на 10-футовой сверхзвуковой аэродинамической трубе Эйба Сильверштейна 10 футов × 10 футов (3.0 м × 3,0 м) Сверхзвуковой Кливленд, Огайо, США
НАСА Гленн 9 на 15 футов аэродинамической трубы 9 футов × 15 футов (2,7 м × 4,6 м) Дозвуковой Кливленд, Огайо, США
НАСА Glenn 8- на 6-футовая аэродинамическая труба 8 футов × 6 футов (2,4 м × 1,8 м) Transonic Кливленд, Огайо, США
Лабораторная установка аэроакустических испытаний сопел НАСА имени Гленна 53 дюйма (1300 мм) Акустические испытания выхлопных форсунок, дозвуковые Кливленд, Огайо, США Свободная струя
Лаборатория исследований компонентов двигателей NASA Glenn Engine Кливленд, Огайо, США
НАСА Glenn Icing Research Tunnel Дозвуковое обледенение Кливленд, Огайо, США
НАСА Лаборатория двигательных систем Гленна активных Полномасштабные испытания двигателя Кливленд, Огайо, США Четыре испытательные камеры: 1 и 2 снесли; 3 и 4 активны.Ячейка 3 имеет возможность обледенения
TitanX Jamestown Автомобильная климатическая аэродинамическая труба 9,4 фута x 11,4 фута (3,0 м x 3,5 м) Климатические испытания систем автомобилей и целых грузовиков Джеймстаун, Нью-Йорк, США Открыт для внешних клиентов
NASA Langley Hypersonic 20 Inch Mach 6 Air 20 дюймов (51 см) Гиперзвуковой Хэмптон, Вирджиния
NASA Langley Hypersonic 31 Inch Mach 10 Air 31 дюйм (79 см) Гиперзвуковой Хэмптон, Вирджиния, США
NASA Langley Hypersonic 20 Inch Mach 6 Tetrafluoromethane Снесен в 2016 г. [10] 20 дюймов (51 см) Гиперзвуковой Хэмптон, Вирджиния, США
NASA Langley Hypersonic Propulsion Integration 8-футовый высокотемпературный туннель 8 футов (2.4 м) Гиперзвуковой, высокотемпературный Хэмптон, Вирджиния, США
NASA Langley Hypersonic Propulsion Integration Arc-Heated Scramjet Гиперзвуковой Хэмптон, Вирджиния, США
NASA Langley Hypersonic Propulsion Integration Combustion Scramjet Гиперзвуковой Хэмптон, Вирджиния, США
NASA Langley Hypersonic Propulsion Integration Supersonic Combustion Гиперзвуковой Хэмптон, Вирджиния
NASA Langley Hypersonic Propulsion Integration 15-дюймовый высокотемпературный туннель Mach 6 15 дюймов (38 см) Гиперзвуковой Хэмптон, Вирджиния, США
НАСА Лэнгли Дозвуковая 12-футовая атмосферная лаборатория 12 футов (3.7 м) Дозвуковая атмосферная Хэмптон, Вирджиния, США
НАСА Лэнгли Дозвуковой 20-футовый вертикальный спиновый туннель 20 футов (6,1 м) Дозвуковое вертикальное вращение Хэмптон, Вирджиния, США
NASA Langley Subsonic 14 × 22 футов в атмосфере 14 футов × 22 футов (4,3 м × 6,7 м) Дозвуковая атмосферная Хэмптон, Вирджиния, США
Дозвуковой туннель низкой турбулентности в Лэнгли, НАСА Дозвуковая низкая турбулентность Хэмптон, Вирджиния, США
NASA Langley Supersonic High-Rn Сверхзвуковой Хэмптон, Вирджиния, США
NASA Langley High-Rn Transonic Dynamics Tunnel в рабочем состоянии 16 футов x 16 футов Аэроупругость, испытания с высокой степенью риска, активные элементы управления, характеристики и устойчивость винтокрылого аппарата, трансзвуковая аэродинамика. Хэмптон, Вирджиния, США Уникальная возможность управлять параметрами масштабирования структуры жидкости с использованием тяжелого газа (R-134a) или воздуха в качестве испытательной среды и переменного давления. [11] Хорошее качество потока для большого трансзвукового туннеля (0–1,2 Маха) [12]
НАСА Лэнгли трансзвуковой 16-футовый атмосферный 16 футов (4,9 м) Трансзвуковой атмосферный Хэмптон, Вирджиния, США
НАСА Национальный трансзвуковой центр Лэнгли Transonic Хэмптон, Вирджиния, США
NASA Langley NASA / GASL HYPULSE Интеграция силовых установок Хэмптон, Вирджиния, США
Аэродинамическая труба ONERA Modane в рабочем состоянии Д 8м x 14м [13] Дозвуковая атмосферная ONERA Modane, Франция Самая большая в мире аэродинамическая труба с непрерывной продувкой, 0 Маха.С 05 по 1. [14]
Аэродинамические трубы RWDI в рабочем состоянии 24 фута, 12 футов [15] Ветротехника, масштабные здания Гуэлф, Онтарио, Канада Две аэродинамические трубы
Texas A&M Oran W. Nicks Низкоскоростная аэродинамическая труба Д 12 футов x Ш 10 футов x В 7 футов Масштабный самолет, БПЛА, ракета, ракета, академические исследования, автомобилестроение, автоспорт, езда на велосипеде, катание на лыжах, архитектурный, транзит, грузовик, разработка продукта 0-200 миль в час Техасский университет A&M, Колледж-Стейшн, Техас, США 7 футов x 7 футов, способный к 0 Мах.4
Авиационная лаборатория Вашингтонского университета (UWAL), аэродинамическая труба Кирстен 8 футов x 12 футов Дозвуковой Сиэтл, Вашингтон, США
Вашингтонский университет, факультет аэро и астро 3x3 3 фута x 3 фута Диапазон скорости прибл. От 20 до 135 миль / ч Сиэтл, Вашингтон, США Оригинальная «Аэродинамическая камера Boeing», построенная в 1918 году с Eiffel размером 4 на 4 фута и обновленная в начале 1990-х с новыми системами питания и увеличенной скоростью EDL 3 фута на 3 фута.
Virginia Tech Stability 6 футов × 6 футов (1.8 м × 1,8 м) Блэксбург, Вирджиния
MARHy аэродинамическая труба (экспериментальная пластина FAST) [1] в рабочем состоянии Цилиндрическая испытательная камера 5 м x 2,5 м Гиперзвуковая / сверхзвуковая аэродинамическая труба разреженного типа. Нет ограничений по времени работы. Число Рейнольдса / см: 26,3 Laboratoire ICARE, CNRS, Орлеан, ФРАНЦИЯ Фундаментальные и прикладные исследования гидродинамических явлений в разреженных сжимаемых потоках.Аэродинамическое и аэротермическое поведение зондов и моделей; Управление потоком плазмы в разреженных и сверх / гиперзвуковых потоках.
PHEDRA (экспериментальная пластина FAST) [2] в рабочем состоянии Цилиндрическая испытательная камера размером 4,5 м x 2,1 м Сверхзвуковая высокоэнтальпийная разреженная аэродинамическая труба. Нет ограничений по времени работы. Средняя энтальпия, МДж / кг: немного <Но <50; Число Маха: 2 <Маха <8; Рабочий газ: N2, Воздух, CO2, Ch5, Ar и обширные смеси Laboratoire ICARE, CNRS, Орлеан, ФРАНЦИЯ Фундаментальные исследования высокоэнтальпийных гидродинамических явлений в неравновесных потоках.Аэродинамическое и аэротермическое поведение зондов и моделей; Исследование входа в атмосферу.
EDITH сверхзвуковая аэродинамическая труба (экспериментальная пластина FAST) [3] в рабочем состоянии Цилиндрическая испытательная камера 1,2 м x 1,7 м Длительное время бега (20 минут). Laboratoire ICARE, CNRS, Орлеан, ФРАНЦИЯ Фундаментальные исследования ударных волн. Аэродинамическое и аэротермическое поведение зондов и моделей. Гидравлический вектор тяги сверхзвукового сопла
Многоцелевой светильник большой амплитуды (ЛАМПА) Вертикальная аэродинамическая труба Bihrle Applied Research в рабочем состоянии 10-футовая испытательная секция Вертикальный, Дозвуковой, Высокий AOA, Статический или колебательный по оси тела Нойбург а.д. Донау, Германия Частная аэродинамическая труба. + - 180 градусов AOA и + -90 градусов бокового скольжения. Разнообразные возможности тестирования: статика, динамическая ось тела ветра, динамическая динамика нескольких осей, одновременный сбор данных о моменте силы и давлении.
.

Отправить ответ

avatar
  Подписаться  
Уведомление о